GAME THEORY

Exercise list 3

Exercise 1

Two players, 1 and 2, share 1€ using the following procedure: each player *i* chooses a number s_i , $s_i \in [0, 1]$, i = 1, 2. The choices are simultaneous. If $s_1 + s_2 \le 1$, each player gets the amount chosen; if $s_1 + s_2 > 1$ both get 0.

i. Determine the set of pure Nash equilibria.

Suppose that player 2, before choosing s_2 , observes the number chosen by player 1 and this fact is common knowledge.

- ii. Find a few examples of pure Nash equilibria of the modified game.
- iii. Determine the set of pure subgame perfect Nash equilibria.

Exercise 2

Player 1 may choose Stop or Continue. If he chooses Stop, the game ends and each player gets 1€. If he chooses Continue, both players simultaneously choose non-negative integers and each player gets the product of the chosen numbers.

- i. Formulate this situation as an extensive-form game with imperfect information.
- ii. Determine the set of pure subgame perfect Nash equilibria.
- iii. How does this set change if the non-negative integers are at most equal to M > 0?

Exercise 3

Consider the following extensive-form game with imperfect information Γ :

This game has two types of Nash equilibria:

Type <u>1</u>: $x_1(E)=1$, $x_2(E')=1$ and $x_3(E'') \in [0, 1/4]$.

Type <u>2</u>: $x_1(E)=0$, $x_2(E') \in [1/3, 1]$ and $x_3(E'')=1$.

- i. Show that equilibria of Type 1 are perfect Bayesian equilibria of Γ .
- ii. Show that no equilibrium of Type 2 is a perfect Bayesian equilibria of Γ .

Exercise 4

Consider the following extensive-form game with imperfect information Γ :

Show that the strategy $x = (x_1, x_2)$, with $x_1(D)=1$ and $x_2(D')=1$, is a perfect Bayesian equilibrium for x < 2.

Exercise 5

Check whether Player 1's strategies (L,R), (R,L), (R,R) and (L,L) are part of perfect Bayesian equilibria of the following game:

Exercise 6

Show that Player 1's strategy (L,R) is part of a perfect Bayesian equilibrium of the following game:

Exercise 7

Consider the following extensive-form game with imperfect information:

a) Write the game in normal form.

- b) Determine the set of pure strategy Nash equilibria of the game.c) How many subgames does this game have?
- d) Determine the set of pure strategy subgame perfect Nash equilibria of the game.
- e) Check whether the equilibria found in d) are perfect Bayesian equilibria.