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Strategic form games

A strategic form game is a tuple G = (Si , ui )Ni=1, where for each
player i = 1, . . . ,N, Si is the set of strategies available to player i ,
and ui : ×N

j=1Sj → R describes player i ’s payoff as a function of
the strategies chosen by all players. A strategic form game is finite
if each player’s strategy set contains finitely many elements.
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Dominant strategies

A strategy ŝi for player i is strictly dominant if
ui (ŝi , s−i ) > ui (si , s−i ) for all (si , s−i ) ∈ S with si 6= ŝi .

Player i ’ s strategy ŝi strictly dominates strategy s̄i , if
ui (ŝi , s−i ) > ui (s̄i , s−i ) for all s−i ∈ Si . In this case, we also say
that s̄i is strictly dominated in S .
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Dominant strategies

A strategy si for player i is iteratively strictly undominated in S
(or survives iterative elimination of strictly dominated strategies) if
si ∈ Sn

i , for all n ≥ 1.

Player i ’ s strategy ŝi weakly dominates strategy s̄i , if
ui (ŝi , s−i ) ≥ ui (s̄i , s−i ) for all s−i ∈ Si , with at least one strict
inequality. In this case, we also say that s̄i is weakly dominated in
S .

A strategy si for player i is iteratively weakly undominated in S
(or survives iterative elimination of weakly dominated strategies) if
si ∈ W n

i , for all n ≥ 1.
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Nash equilibrium

Given a strategic form game G = (Si , ui )Ni=1, the joint strategy
ŝ ∈ S is a pure strategy Nash equilibrium of G if for each player
i , ui (ŝ) ≥ ui (si , ŝ−i ) for all si ∈ Si .
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Mixed strategies

Fix a finite strategic form game G = (Si , ui )Ni=1. A mixed
strategy mi for player i is a probability distribution over Si . That
is, mi : Si → [0, 1] assigns to each si ∈ Si the probability, mi (si ),
that si will be played.
We shall denote the set of mixed strategies for player i by Mi .
Consequently, Mi = {mi : Si → [0, 1]|∑si∈Si mi (si ) = 1}.
From now on, we shall call Si player i ’s set of pure strategies.
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Nash equilibrium

Given a finite strategic form game G = (Si , ui )Ni=1, a joint strategy
m̂ ∈ M is a Nash equilibrium of G if for each player i ,
ui (m̂) ≥ ui (mi , m̂−i ) for all mi ∈ Mi .
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Characterization of Nash equilibrium

Theorem 7.1: The following statements are equivalent:

1 m̂ ∈ M is a Nash equilibrium.

2 For every player i , ui (m̂) = ui (si , m̂−i ) for all si ∈ Si with
positive weight in m̂i and ui (m̂) ≥ ui (si , m̂−i ) for all si ∈ Si
with zero weight in m̂i .

3 For every player i , ui (m̂) ≥ ui (si , m̂−i ) for all si ∈ Si .
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Existence of Nash equilibrium

Theorem 7.2:
Every finite strategic form game possesses at least one Nash
equilibrium.
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Game of incomplete information (Bayesian game)

A game of incomplete information is a tuple
G = (pi ,Ti , Si , ui )Ni=1, where for each player i = 1, . . . ,N, the set
Ti is finite, ui : S × T → R, and for each ti ∈ Ti , pi (·|ti ) is a
probability distribution on T−i . If, in addition, for each player i ,
the strategy set Si is finite, then G is called a finite game of
incomplete information. A game of incomplete information is
also called a Bayesian game.
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Bayesian-Nash equilibrium

A Bayesian-Nash equilibrium of a game of incomplete
information is a Nash equilibrium of the associated strategic form
game.
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Existence of Bayesian-Nash equilibrium

Theorem 7.3:
Every finite game of incomplete information possesses at least one
Bayesian-Nash equilibrium.
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Extensive form games

An extensive form game, denoted by Γ, is composed of the
following elements:

1 A finite set of players N.

2 A set of actions A which includes all possible actions that
might potentially be taken at some point in the game. A need
not be finite.

3 A set of nodes, or histories, X where:
1 X contains a distinguished element x0, called the initial node,

or empty history,
2 each x ∈ X \ {x0} takes the form x = (a1, a2, . . . , ak ) for

some finitely many actions ai ∈ A, and
3 if (a1, a2, . . . , ak ) ∈ X \ {x0} for some k > 1, then

(a1, a2, . . . , ak−1) ∈ X \ {x0}.
A node, or history, is then simply a complete description of the
actions taken so far in the game.
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Extensive form games

We shall use the terms history and node interchangeably. Let
A(x) = {a ∈ A : (x , a) ∈ X} denote the set of actions
available to the player whose turn it is to move after the
history x ∈ X \ {x0}.

4 A set of actions A(x0) ⊆ A and a probability distribution π on
A(x0) to describe the role of chance in the game. Chance
always moves first, and just once, by randomly selecting an
action from A(x0) using the probability distribution π. Thus,
(a1, a2, . . . , ak) ∈ X \ {x0} implies that ai ∈ A(x0) for i = 1
and only i = 1.

5 A set of end nodes, E = {x ∈ X : (x , a) /∈ X for all a ∈ A}.
Each end node describes one particular complete play of the
game from beginning to end.
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Extensive form games

6 A function ι : X \ (E ∪ {x0})→ N that indicates whose turn
it is at each decision node in X . Let
Xi = {x ∈ X \ (E ∪ {x0}) : ι(x) = i} denote the set of
decision nodes belonging to player i .

7 A partition I of the set of decision nodes, X \ (E ∪ {x0}),
such that if x and x ′ are in the same element of the partition,
then (i) ι(x) = ι(x ′), and (ii) A(x) = A(x ′). I partitions the
set of decision nodes into information sets. The information
set containing x is denoted by I(x).

8 For each i ∈ N, a von Neumann-Morgenstern payoff function
whose domain is the set of end nodes, ui : E → R. This
describes the payoff to each player for every possible complete
play of the game.
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Extensive form games

We write Γ =< N,A,X ,E , ι, π, I , (ui )i∈N >. If the sets of
actions, A, and nodes, X , are finite, then Γ is called a finite
extensive form game.
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Extensive form game strategy

Consider an extensive form game Γ. Formally, a pure strategy for
player i in Γ is a function si : Ii → A, satisfying si (I(x)) ∈ A(x)
for all x with ι(x) = i . Let Si denote the set of pure strategies for
player i in Γ.
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(Kuhn) Backward induction and Nash equilibrium

Theorem 7.4: If s is a backward induction strategy for the
perfect information finite extensive form game Γ, then s is a Nash
equilibrium of Γ.
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Existence of pure strategy Nash equilibrium

Every finite extensive form game of perfect information possesses a
pure strategy Nash equilibrium.
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Subgames

A node x is said to define a subgame of an extensive form game
if I(x) = {x} and whenever y is a decision node following x , and
z is in the information set containing y , then z also follows x .
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Pure strategy subgame perfect equilibrium

A joint pure strategy s is a pure strategy subgame perfect
equilibrium of the extensive form game Γ if s induces a Nash
equilibrium in every subgame of Γ.
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Pure strategy subgame perfect equilibrium

Theorem 7.5: For every finite extensive form game of perfect
information, the set of backward induction strategies coincides
with the set of pure strategy subgame perfect equilibria.
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Perfect recall

An extensive form game has perfect recall if whenever two nodes
x and y = (x , a, a1, . . . , ak) belong to a single player, then every
node in the same information set as y is of the form
w = (z , a, a′1, . . . , a′l ) for some node z in the same information set
as x .
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Subgame perfect equilibrium

A joint behavioural strategy b is a subgame perfect equilibrium
of the finite extensive form game Γ if it induces a Nash equilibrium
in every subgame of Γ.
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(Selten) Existence of subgame perfect equilibrium

Theorem 7.6: Every finite extensive form game with perfect recall
possesses a subgame perfect equilibrium.
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Example 1

Joana Pais



Bayes’ rule

Beliefs must be derived from behavioral strategies using Bayes’ rule
whenever possible.
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Example 2
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Independence

Beliefs must reflect that players choose their strategies
independently.
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Common beliefs

Players with identical information have identical beliefs.
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Example 3
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Example 4
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Consistent assessments

An assessment (p, b) for a finite extensive form game Γ is
consistent if there is a sequence of completely mixed behavioural
strategies bn, converging to b, such that the associated sequence
of Bayes’ rule induced systems of beliefs pn, converges to p.
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Example 5
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Sequential rationality

An assessment (p, b) for a finite extensive form game is
sequentially rational if for every player i , every information set I
belonging to player i , and every behavioural strategy b′i of player i ,

vi (p, b|I ) ≥ vi (p, (b′i , b−i )|I ).

We also call a joint behavioural strategy b sequentially rational if
for some system of beliefs p the assessment (p, b) is sequentially
rational as above.
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Sequential equilibrium

An assessment for a finite extensive form game is a sequential
equilibrium if it is both consistent and sequentially rational.
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(Kreps and Wilson) Existence of sequential equilibrium

Theorem 7.7: Every finite extensive form game with perfect recall
possesses at least one sequential equilibrium. Moreover, if an
assessment (p, b) is a sequential equilibrium, then the behavioural
strategy b is a subgame perfect equilibrium.
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