Sistemas Dinâmicos

LISTA 1

- (1) Determine se o sistema dinâmico $f: \mathbb{R} \to \mathbb{R}$ dado por $f(x) = 3x 3x^2$ tem pontos periódicos com período 2.
- (2) Considere uma função contínua $f: \mathbb{R} \to \mathbb{R}$. Prove:
 - (a) Se $[a,b] \subset f([a,b])$, então f tem um ponto fixo em [a,b].
 - (b) Se $f([a,b]) \subset [a,b]$, então f tem um ponto fixo em [a,b].
 - (c) Se $[c,d] \subset f([a,b])$, $[a,b] \subset f([c,d])$ e $[a,b] \cap [c,d] = \emptyset$, então f tem um ponto periódico com período 2.
- (3) Seja $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$ o toro n-dimensional. Mostre que o endomorfismo do toro $T_A \colon \mathbb{T}^n \to \mathbb{T}^n$ é invertível (é um automorfismo do toro) sse $|\det A| = 1$.
- (4) Considere a circunferência $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ dotada da métrica

$$d(x,y) = \min_{p \in \mathbb{Z}} |x - y - p|.$$

- (a) Para a rotação na circunferência $R_{\alpha} \colon \mathbb{T} \to \mathbb{T}$, $R_{\alpha}(x) = x + \alpha \mod \mathbb{Z}$, mostre que se $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, todas as órbitas são densas em \mathbb{T} .
- (b) Dada a transformação expansora na circunferência $E_2 : \mathbb{T} \to \mathbb{T}$, $E_2(x) = 2x \mod \mathbb{Z}$, determine uma órbita densa. Sugestão: escreva $x \in [0, 1[$ na base binária:

$$x = (0.a_1 a_2 \dots)_2$$
$$= \sum_{i>1} \frac{a_i}{2^i}$$

onde $a_i \in \{0, 1\}$.

- (5) Diga se os sistemas dinâmicos $f,g:\mathbb{R}\to\mathbb{R}$ são topologicamente conjugados:
 - (a) f(x) = x, $g(x) = x^2$
 - (b) f(x) = x/3, g(x) = 2x
 - (c) f(x) = 2x, $g(x) = x^3$
- (6) Calcule a entropia topológica das transformações expansoras $h(E_m)$ para cada $m \in \mathbb{N}$.

1