# dynamic games with complete information

part 1

#### roadmap

extensive form games

backwards induction backwards induction with perfect information vs. Nash equilibria vs. IEDS

references sec. 2.1 and 2.4 of Gibbons Ch 2.2 and 11 of Dutta

example: (sequential-move) matching pennies



definition of a strategy

a strategy is a complete, conditional plan of actions

- **conditional** because it tells each player which branch to follow if arriving at an information set
- **complete** because it tells her what to choose at every information set

example: sequential-move matching pennies



strategies in sequential matching pennies

2 strategies for player 1: {h, t} 2<sup>2</sup> strategies for player 2: {hh, ht, th, tt}

mixed strategies

mixed strategies have same definition: probability distribution over pure strategies!

in the sequential matching pennies, mixed strategies for player 1 are given by a number  $\sigma_1$ , whereas mixed strategies for player 2 are given by 3 numbers  $\sigma_2$ ,  $\alpha_2$ ,  $\beta_2$ 

#### example: normal form sequential-move matching pennies

| 1<br>2 | H     | Т     |
|--------|-------|-------|
| HH     | 1,-1  | -1, 1 |
| HT     | 1,-1  | 1,-1  |
| TH     | -1, 1 | -1, 1 |
| TT     | -1, 1 | 1,-1  |

# the set of NE in a dynamic game of complete information is the set of NE of its normal form

So, to find NE of an extensive-form game,

- 1. First, write down its normal-form
- 2. Second, compute its NE



two NE: (in, accommodate), (out, fight)

| incumbent<br>challenger | accommodate | fight       |
|-------------------------|-------------|-------------|
| in                      | <u>2, 1</u> | 0, 0        |
| out                     | 1, <u>2</u> | <u>1, 2</u> |

does the second NE make sense?



**backward induction**: sequential rationality rules out unreasonable NE or non-credible threats

backward induction

Kuhn's (and Zermelo's) Theorem: every game of perfect information with a finite number of nodes has a solution to backward induction.

#### extensive form games backward induction and IEDS

backward induction (in the extensive form) is the same as solving the game by IEDS (in the strategic form)

#### backward induction and IEDS

example:



## backward induction and IEDS



# SPNE: example dynamic game without perfect information



# SPNE: example

dynamic game without perfect information

Post-entry payoffs

| Pepsi | Т            | A          |
|-------|--------------|------------|
| Coke  |              |            |
| Т     | <u>-2,-1</u> | 0,-3       |
| A     | -3,1         | <u>1,2</u> |

# SPNE: example

dynamic game without perfect information

Nash equilibria

| Pepsi | Т             | A           |
|-------|---------------|-------------|
| Coke  |               |             |
| ET    | -2, <u>-1</u> | 0,-3        |
| EA    | -3,1          | 1,2         |
| ОТ    | 0,5           | 0, <u>5</u> |
| OA    | 0,5           | 0, <u>5</u> |
|       |               | •           |

> Not credible!

# **SPNE** definition of a subgame

a **subgame** is a collection of nodes and branches such that

- 1. it starts at a single decision node
- 2. it contains every successor to this node
- 3. if it contains any part of an information set, then it contains all nodes in that information set

subgames: examples and counterexamples



#### SPNE definition

a subgame perfect Nash equilibrium is a vector of strategies that, when confined to any subgame of the original game, have the players playing a Nash equilibrium within that subgame.

in a game of perfect information, the SPNE coincides with the backward induction solution

(and every finite dynamic game of complete and perfect information has a SPNE)

example: sequential bargaining

player 1 and 2 bargain over 1 USD; timing is as follows:

per. 1: player 1 proposes to take a share s1, leaving 1 - s1 to player 2; player 2 accepts or rejects (in which case play continues to per. 2)

per. 2: player 2 proposes that player 1 takes a share s2, leaving 1 - s2 to player 2; player 1 accepts or rejects (in which case play continues to per. 3)

per. 3: player 1 receives s and leaves 1-s to player 2, 0 < s < 1 players discount payoffs by a factor t, 0 < t < 1

example: sequential bargaining



example: solving sequential bargaining

per. 2:

player 1 accepts s2 iff s2  $\geq$  ts;

player 2 faces the following:

```
1. offers s2 = ts or
```

2. offers  $s_{2} < ts$  (to be rejected) and receives 1 - s next period (with discounted value t(1-s))

since t(1-s) < 1-ts, player 2 should propose an offer  $(s2^*, 1-s2^*)$ , where  $s2^*=ts$  (to be accepted by player 1)

example: solving sequential bargaining per. 1:

player 2 accepts 1 - s1 iff  $1 - s1 \ge t(1 - s2^*) = t(1 - ts)$  or  $s1 \le 1 - t(1 - ts)$ 

player 1 faces the following:

- Offers 1 s1 = t(1-ts) to player 2, leaving 1-t + tts for herself or
- 2. Offers 1-s1 < t(1-s2\*) (to be rejected) and receives s2\* = ts next period, with discounted value tts</p>

since tts < 1-t + tts, player 1 should propose (s1\*,1-s1\*),
where s1\* = 1-t + tts</pre>