static games with incomplete information
part 1

roadmap

Bayes-Nash equilibrium (BNE)
examples
Harsanyi's proposal definition

references

Chap. 20 of Dutta

example:

 prisoners' dilemma - 2 is tough| 1 | 2
 type 1 | Not to confess |
| :---: | :---: | :---: |
| Confess | | |
| Not to confess | $-1,-1$ | $-6, \underline{0}$ |
| Confess | $\underline{0},-6$ | $\underline{-3}, \underline{-3}$ |

example:

prisoners' dilemma - 2 is accommodating

Not to confess	$-1, \underline{1}$	Confess
Confess to confess	$\underline{0}, \underline{-4}$	$-6,-2$
	$\underline{-3},-5$	

example:

coordination game: 2 is matched

Book launch	$\underline{2}, \underline{1}$	0,0
Movie	0,0	$\underline{1}, \underline{2}$

example:

coordination game: 2 is mismatched

static games with incomplete information definition
a game of incomplete information is one in which players do not know some relevant characteristic of their opponents, which may include their payoffs, their available options, and even their beliefs
static games with incomplete information examples
prisoners' dilemma
player 1 always plays Confess
player 2, type tough plays Confess
player 2, type accommodating plays Not Confess
coordination game
player 1 plays mixed strategy λ
player 2 , type matched plays mixed strategy μ_{1}
player 2, type mismatched plays mixed
strategy μ_{2}
static games with incomplete information common priors

assumption of a common prior:

probabilities of types must become part of the game and are known by all players

Harsanyi's proposal

static games with incomplete information

 Bayes-Nash equilibriumHarsanyi' s proposal

- turn it into a game of complete but imperfect information
- use Nash equilibrium as the solution concept
a Bayes-Nash equilibrium of the game is a triple ($\lambda, \mu_{1}, \mu_{2}$) in which each player - and each player type - plays a best response, as follows:
(1) μ_{i} maximizes the type i of player 2's payoff when λ is l's strategy;
(2) λ maximizes player l's payoff when the type i of player 2 is playing μ_{i} and the probabilities of types 1 and 2 are respectively p and l-p

static games with incomplete information

Bayes-Nash equilibrium in the coordination
two pure-strategy Bayes-Nash equilibria whenever p $\geq 2 / 3$:
l. player 1 plays BL while player 2 plays (BL,M)
2. player 1 plays M and player 2 plays (M,BL)
if $2 / 3>p \geq 1 / 3$, there is only one pure-strategy Bayes-Nash equilibrium, namely the first one
if $\mathrm{p}<1 / 3$, there is no pure-strategy Bayes-Nash equilibrium
there is always a mixed-strategy Bayes-Nash equilibrium:

$$
\lambda=2 / 3, \mu_{1}=1 / 3, \mu_{2}=1 / 3
$$

there may be additional Bayes-Nash equilibria, characterized by $\lambda=2 / 3$ and $p\left(3 \mu_{1}-1\right)=(1-p)\left(1-3 \mu_{2}\right)$

example

Cournot duopoly with incomplete information

A homogeneous product is produced by only two firms, 1 and 2 . The quantities are denoted by ql and q2

They choose the quantities simultaneously
The market price is given by $\mathrm{P}(\mathrm{Q})=\mathrm{a}-\mathrm{Q}$, where $\mathrm{Q}=$ ql + q2

Firm l's cost function: $\mathrm{Cl}(\mathrm{ql})=$ c.ql
All the above is common knowledge

example

Cournot duopoly with incomplete information

Firm 2's cost depends on some factor (e.g. technology) that only $2 \mathrm{knows} .\mathrm{Its} \mathrm{costs} \mathrm{can} \mathrm{be:}$

- High: C2(qえ) = cHq2
- Low: C2(qえ) = cLqZ

Before production, firm 2 can observe the factor and know its marginal cost; however, firm 1 cannot observe firm 2's cost. She believes 2's cost function is

- High: C2(q2) = cHq2 with probability p
- Low: C2(q2) = cLq2 with probability l-p

example

Cournot duopoly with incomplete information

The BNE is $\left(q^{*}{ }_{2}\left(\mathrm{c}_{\mathrm{H}}\right), \mathrm{q}^{*}{ }_{2}\left(\mathrm{c}_{\mathrm{L}}\right), \mathrm{q}^{*}{ }_{1}\right)$ such that:

$$
\begin{aligned}
& q_{2}^{*}\left(c_{H}\right)=\frac{1}{3}\left(a-2 c_{H}+c\right)+\frac{1-p}{6}\left(c_{H}-c_{L}\right) \\
& q_{2}^{*}\left(c_{L}\right)=\frac{1}{3}\left(a-2 c_{L}+c\right)+\frac{p}{6}\left(c_{H}-c_{L}\right) \\
& q_{1}^{*}=\frac{a-2 c+p c_{H}+(1-p) c_{L}}{3}
\end{aligned}
$$

example:

coordination game

Book launch	$2+t_{1}, 1$	Book launch
Movie	0,0	$1,2+t_{2}$

example:
 coordination game - BNE

t_{i} follows U [0,x]
Bayes-Nash equilibrium: player l plays BL if t_{1} above c and M otherwise player 2 plays M if t_{2} above p and BL otherwise
player l plays BL with probability ($\mathrm{x}-\mathrm{c}$)/x player 2 plays M with probability ($\mathrm{x}-\mathrm{p}$)/x
but $\lim _{x \rightarrow 0}(x-c) / x=\lim _{x \rightarrow 0}(x-p) / x=2 / 3$

