static games with incomplete information

part 1

roadmap

```
Bayes-Nash equilibrium (BNE)
examples
Harsanyi's proposal
definition
```

references Chap. 20 of Dutta

example: prisoners' dilemma – 2 is tough

type 1	Not to confess	Confess
Not to confess	-1,-1	-6, <u>0</u>
Confess	<u>0</u> ,-6	<u>-3,-3</u>

example: prisoners' dilemma – 2 is accommodating

type 2	Not to confess	Confess
Not to confess	-1, <u>1</u>	-6,-2
Confess	<u>0,-4</u>	<u>-3</u> ,-5

example: coordination game: 2 is matched

type 1	Book launch	Movie
Book launch	<u>2,1</u>	0,0
Movie	0,0	<u>1,2</u>

example: coordination game: 2 is mismatched

type 2	Book launch	Movie
Book launch	<u>2</u> ,0	0,1
Movie	0,2	<u>1</u> ,0

static games with incomplete information definition

a game of incomplete information is one in which players do not know some relevant characteristic of their opponents, which may include their payoffs, their available options, and even their beliefs

static games with incomplete information examples

```
prisoners' dilemma
player 1 always plays Confess
player 2, type tough plays Confess
player 2, type accommodating plays Not
Confess
```

coordination game player 1 plays mixed strategy λ player 2, type matched plays mixed strategy μ_1 player 2, type mismatched plays mixed strategy μ_2 strategy μ_2

static games with incomplete information common priors

assumption of a common prior:

probabilities of types must become part of the game and are known by all players

static games with incomplete information Bayes-Nash equilibrium

Harsanyi's proposal

- turn it into a game of complete but imperfect information
- use Nash equilibrium as the solution concept
- a Bayes-Nash equilibrium of the game is a triple (λ, μ_1, μ_2) in which each player and each player type plays a best response, as follows:
- (1) μ_i maximizes the type i of player 2's payoff when λ is 1's strategy;
- (2) λ maximizes player 1's payoff when the type i of player 2 is playing μ_i and the probabilities of types 1 and 2 are respectively p and 1-p

static games with incomplete information

Bayes-Nash equilibrium in the coordination game

two pure-strategy Bayes-Nash equilibria whenever $p \ge 2/3$:

- 1. player 1 plays BL while player 2 plays (BL,M)
- 2. player 1 plays M and player 2 plays (M,BL)

if $2/3 > p \ge 1/3$, there is only one pure-strategy Bayes-Nash equilibrium, namely the first one

if p < 1/3, there is no pure-strategy Bayes-Nash equilibrium

there is always a mixed-strategy Bayes-Nash equilibrium: $\lambda = 2/3$, $\mu_1 = 1/3$, $\mu_2 = 1/3$

there may be additional Bayes-Nash equilibria, characterized by $\lambda = 2/3$ and $p(3\mu_1-1)=(1-p)(1-3\mu_2)$

example

Cournot duopoly with incomplete information

A homogeneous product is produced by only two firms, 1 and 2. The quantities are denoted by q1 and q2

They choose the quantities simultaneously

The market price is given by P(Q) = a - Q, where Q = q1 + q2

Firm 1's cost function: C1(q1) = c.q1

All the above is common knowledge

example

Cournot duopoly with incomplete information

Firm 2's cost depends on some factor (e.g. technology) that only 2 knows. Its costs can be:

- High: C2(q2) = cHq2
- Low: C2(q2) = cLq2

Before production, firm 2 can observe the factor and know its marginal cost; however, firm 1 cannot observe firm 2's cost. She believes 2's cost function is

- High: C2(q2) = cHq2 with probability p
- Low: C2(q2) = cLq2 with probability 1-p

example

Cournot duopoly with incomplete information

The BNE is $(q_2^*(c_H), q_2^*(c_L), q_1^*)$ such that:

$$q^*_{2}(c_H) = \frac{1}{3}(a - 2c_H + c) + \frac{1 - p}{6}(c_H - c_L)$$

$$q^*_{2}(c_L) = \frac{1}{3}(a - 2c_L + c) + \frac{p}{6}(c_H - c_L)$$

$$q^*_{1} = \frac{a - 2c + pc_H + (1 - p)c_L}{3}$$

example: coordination game

1	Book launch	Movie
Book launch	2+t ₁ ,1	0,0
Movie	0,0	1,2+t ₂

example:

coordination game - BNE

t_i follows U [0,x]

Bayes-Nash equilibrium:

player 1 plays BL if t_1 above c and M otherwise player 2 plays M if t_2 above p and BL otherwise

player 1 plays BL with probability (x-c)/x player 2 plays M with probability (x-p)/x

but
$$\lim_{x\to 0} (x-c)/x = \lim_{x\to 0} (x-p)/x = 2/3$$