Instituto Superior de Economia e Gestão Análise Matemática II Licenciatura em MAEG Ficha de exercícios $n^{o}3$

- 1. Seja a_n uma sucessão tal que a série $\sum a_n$ é absolutamente convergente. Prove que a série $\sum a_n^2$ também é absolutamente convergente. Dê um exemplo que mostre que o recíproco não é verdadeiro.
- 2. Seja u_n o termo geral de uma sucessão convergente e tal que

$$u_n u_{n+1} < 0, \quad \forall n \in \mathbb{N}.$$

- (a) Indique, justificando qual o limite de u_n .
- (b) Prove que se fôr verificada a condição $\left|\frac{u_{n+1}}{u_n}\right| \leq 1$, para todo $n \in \mathbb{N}$, a série $\sum_{n=1}^{+\infty} u_n$ é convergente estando a sua soma compreendida entre u_1 e $u_1 + u_2$.
- 3. Seja $f_n: \mathbb{R} \to \mathbb{R}$ a sucessão de funções definida por:

$$f_n(x) = \frac{nx^2 + 1}{nx^4 + 2n}.$$

Diga, justificando, se a sucessão (f_n) converge uniformemente em \mathbb{R} .

4. Considere a sucessão de funções $f_n:[0,1]\to\mathbb{R}$ definida por:

$$f_n(x) = \frac{x^n}{n+1}.$$

- (a) Mostre que a sucessão de funções converge pontualmente em [0, 1] e determine a função limite.
- (b) Diga, justificando, se a sucessão (f_n) converge uniformemente em [0,1].
- 5. Estude, quanto à convergência, pontual e uniforme as seguintes sucessões de funções nos intervalos considerados:

1

(a)
$$f_n(x) = \frac{nx}{n+x^2}$$
, em] - 1,1[e em \mathbb{R} ;

(b)
$$g_n(x) = \frac{2n^2x^2}{1+2n^2x^2}$$
, em $[-3, +\infty[$ e em $[3, +\infty[$;

(c)
$$f_n(x) = \frac{ne^x}{1 + ne^x}$$
, em $]-\infty, -1]$ e em $[1, +\infty[$;

6. Dada a sucesão $f_n(x) = nxe^{-nx^2}$, mostre que

$$\lim_{n \to +\infty} \left(\int_0^1 f_n(x) dx \right) \neq \int_0^1 \left(\lim_{n \to +\infty} f_n(x) \right) dx.$$

Que conclusão pode tirar sobre a eventual convergência uniforme de $f_n(x)$ no intervalo [0,1]?

7. Seja f_n a sucessão de funções definida por

$$f_n(x) = \frac{nx^2}{1 + nx}.$$

- (a) Calcule o limite pontual de f_n no intervalo [0,1] e indique, justificando, se a convergência é uniforme nesse mesmo intervalo.
- (b) Calcule $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$.
- 8. Sendo $f_n:\mathbb{R}\to\mathbb{R}$ a sucessão de funções definida por

$$f_n(x) = n \sin\left(\frac{x+1}{n}\right),$$

calcule o seu limite pontual e prove que a convergência não é uniforme em \mathbb{R} .

9. Estude, quanto à convergência uniforme as seguintes séries reais, nos conjuntos indicados:

(a)
$$\sum_{n=1}^{+\infty} \frac{x^2}{(1+x^2)^n}$$
 em $[-1,1]$;

(b)
$$\sum_{n=0}^{+\infty} x(1-x)^n$$
 em $[0,1]$;