Weeks 1 and 2: Chap. 1 – Vectors

1 Direct applications

- **1.1.** Consider the vectors of \mathbb{R}^2 : $\vec{u} = (1,2)$ and $\vec{v} = (-1,1)$. Sketch them in the plane and determine geometrically: a) $\vec{u} + \vec{v}$ b) $\vec{u} - \vec{v}$ c) $-\vec{u} + 3\vec{v}$ d) $||\vec{u}||$ e) $d(\vec{u}, \vec{v})$.
- **1.2.** Solve analytically the previous exercise and compare the results.
- **1.3.** Consider the vectors of \mathbb{R}^3 : $\vec{u} = (a, 1 + a, 2a), \vec{v} = (1, 1, 3)$ and $\vec{w} = (2, 1, 0)$. Determine the value of $a \in \mathbb{R}$ so that the vector \vec{u} is a linear combination of \vec{v} and \vec{w} .
- **1.4.** The vectors $\vec{u} = (-1, -1, -a, -1)$ and $\vec{v} = (a + 2, a, a, a)$, with $a \in \mathbb{R}$, are orthogonal if and only if:
- a) a = 2 b) a = 0 c) a = -2 or a = -1 d) a = 1.
- **1.5.** Compute the distance $d(\vec{u}, \vec{v})$ for the vectors in exercise 1.4 (with $a \in \mathbb{R}$).

2 Definitions and proofs

- **2.1.** Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Show the following properties of the inner product:
- a) $\vec{u}.\vec{v} = \vec{v}.\vec{u}$
- b) $(\lambda \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\lambda \vec{v}) = \lambda (\vec{u} \cdot \vec{v})$
- **2.2.** Find the distance $d(\vec{u}, \vec{v})$ between the vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$.
- **2.3.** Proof that $||\vec{u}|| > 0$ for any $\vec{u} \in \mathbb{R}^n \setminus \{\vec{0}\}$.
- **2.4.** Define linear combination of vectors.
- **2.5.** Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ be linearly independent. Show that $\vec{u} + \vec{v}, \vec{u} + \vec{w}$ and $\vec{v} + \vec{w}$ are also linearly independent.

Problems and modelling 3

3.1. Assume the following economic data, without units:

Country	Productivity	Competition	Economic growth
Portugal	3	2	-1
Canada	8	5	0
Thayland	1	1	-3

- a) Which country is closer to Portugal in all three indices?
- b) In this model, the portuguese data depends linearly on the others?
- **3.2.** Assume the following grades and weights:

Course	Weight	João's grades	Leonor's grades
Mathematics	3/10	?	15
Accounting	3/10	18	12
Law	3/10	10	14
English	1/10	16	15

- a) Compute the average grade of the above students using the inner product of vectors.
- b) What is the grade that João needs to obtain in Maths so that he has the same average grade as Leonor?

4 Additional exercises

4.1. Book (K. Sydsaeter & P.J. Hammond, *Essential Mathematics for Economic Analysis*, Prentice Hall, 2008):

Section 15.7: 1 to 8; **Section 15.8:** 1 to 6.

4.2. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$. Show the triangular inequality: $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$. (Hint: Decompose $||\vec{u} + \vec{v}||^2$ and use the Cauchy-Schwarz inequality.)