1 Direct applications

1.1. Book (K. Sydsaeter \& P.J. Hammond, Essential Mathematics for Economic Analysis, Prentice Hall, 2008):
Section 15.2: 1, 2 and 4;
Section 15.3: 1, 3 and 4;
Secção 15.4: Exercícios 1, 2 e 4;
Seç̧ão 15.5: Exercícios 1 a 4.
1.2. Find an example of a diagonal matrix D and a vector \vec{v} with the same dimension, and compute $D \vec{v}$.
1.3. Give an example of an upper triangular matrix S and find its transpose.
1.4. Give two vectors \vec{u} and \vec{v} with the same dimension, and a linear combination of them.
1.5. Determine the rank of the following matrices:

$$
A=\left[\begin{array}{cc}
1 & 2 \\
8 & 16
\end{array}\right], B=\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 0 & 1
\end{array}\right], C=\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
2 & 4 & -4 & 7 \\
-1 & -2 & -1 & -2
\end{array}\right] .
$$

2 Definitions and proofs

2.1. Let A and B be matrices with dimension $k \times p$, and $\alpha, \beta \in \mathbb{R}$. Show that:
a) $A+B=B+A$
b) $(\alpha+\beta) A=\alpha A+\beta A$
c) $\alpha(A+B)=\alpha A+\alpha B$.
2.2. Let I be the identity matrix of dimension n and $k \in \mathbb{N}$. Prove that $I^{k}=I$.
2.3. Consider a matrix A with dimension $k \times p$, a matrix B with dimension $p \times \ell$ and $\lambda \in \mathbb{R}$. Prove that:
a) $(\lambda A)^{\prime}=\lambda A^{\prime}$
b) $(A B)^{\prime}=B^{\prime} A^{\prime}$.
2.4. Let a matrix A with dimension $m \times n$. Show that if $n=1, A^{\prime} A=0 \Rightarrow A=\mathbf{0}$.
2.5. Consider two commutable matrices A and B (i.e. $A B=B A$) and C a matrix such that $C=3 A^{2}-5 A-I$, where I is the identity. Show that C and B commute.

3 Problems and modelling

3.1. Consider the matrix $R(\theta)=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and the vector $\overrightarrow{e_{x}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
a) Represent on the unit circle and find the values of $\sin \theta$ and $\cos \theta$ for the angles $\theta=$ $0, \pi / 6, \pi / 4, \pi / 3, \pi / 2, \pi, 3 \pi / 2$.
b) Compute $R(\theta) \overrightarrow{e_{x}}$ and sketch the result, concluding that $R(\theta)$ represents the rotation of $\overrightarrow{e_{x}}$ by θ around the origin.
c) Verify that $[R(\theta)]^{2}=R(2 \theta)$ using the identities: $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ and $\sin 2 \theta=$ $2 \sin \theta \cos \theta$.
d) Interpret geometrically the previous result.
3.2. Three companies presented the following results (in million euros) in 2008:

Company	Quarter 1	Quarter 2	Quarter 3	Quarter 4
1	5	2	-1	2
2	2	8	0	5
3	1	3	-1	2

In 2009 the results were:

Company	Quarter 1	Quarter 2	Quarter 3	Quarter 4
1	2	7	3	5
2	4	4	6	6
3	-1	-1	-1	0

a) Determine, for each company, in each quarter, the changes between 2008 and 2009 .
b) Determine, for each company, in each quarter, the average result of the two years.
3.3. Consider the set of vectors $\{(1,0,0),(0,1,0),(-4,2,-8)\}$.
a) Determine by the definition if it is a set of linearly independent vectors.
b) Define rank of a matrix and determine the previous result by studying the rank.

4 Additional exercises

4.1. Determine the rank of the matrices:

$$
A=\left[\begin{array}{cccc}
1 & 3 & 0 & 0 \\
2 & 4 & 0 & -1 \\
1 & -1 & 2 & 2
\end{array}\right], B=\left[\begin{array}{cccc}
2 & 1 & 3 & 7 \\
-1 & 4 & 3 & 1 \\
3 & 2 & 5 & 11
\end{array}\right], C=\left[\begin{array}{cccc}
1 & -2 & -1 & 1 \\
2 & 1 & 1 & 2 \\
-1 & 1 & -1 & -3 \\
-2 & -5 & -2 & 0
\end{array}\right] .
$$

4.2. Book (K. Sydsaeter \& P.J. Hammond, Essential Mathematics for Economic Analysis, Prentice Hall, 2008):
15.2: 3;
15.3: 2, 5;
15.4: 3, 6, 7;
15.5: $5,7$.

