Maths I
Week 7: Chap. 5 - Real functions, and Chap. 6 - Variations

1 Direct applications

1.1. Book:
6.5: $1,4$.
1.2. Sketch the graph of the following functions:
a) $-x^{2}$
b) $-\sqrt{x}$
c) e^{x}
d) $\ln x$
e) $\frac{1}{x}$
f) $\sin x$
g) $\cos x$
h) $\tan x$
i) $a x+b$ with $a, b \in \mathbb{R}$
j) $|x+5|$
k) $\ln (x-5)$
$\ell)$ an odd function.
1.3. Compute the derivative with respect to x of the functions in questions a) to i) in 1.2 .
1.4. For which values of a and b the function $f(x)=\left\{\begin{array}{ll}a x-2 & \text { se } x \leq 1 \\ b-2 x^{2} & \text { se } x>1\end{array}\right.$ is continuous?
1.5. Let $f(x)=e^{x}, g(x)=x^{n}$ with $n \in \mathbb{Z}$, and $h(x)=\sin x$. Compute:
a) $\frac{d}{d x}[f(x)+g(x)+h(x)]$
b) $\frac{d}{d x}[5 f(x)+2 g(x)]$
c) $\frac{d}{d x}[g(x) h(x)]$
d) $\frac{d}{d x}[f(x) g(x) h(x)]$
e) $\frac{d}{d x}\left[\frac{h(x)}{f(x)}\right]$
f) $\frac{d}{d x}\left[\frac{g(x) h(x)}{f(x)}\right]$.
1.6. Let $f(x)=\sqrt{x}$.
a) Find the domain of f and discuss its continuity and differentiability.
b) Compute: $\frac{d f(x)}{d x}, \frac{d^{2} f(x)}{d x^{2}}$ and $\frac{d^{3} f(x)}{d x^{3}}$.

2 Definitions and proofs

2.1. Prove by the definition that: $\lim _{x \rightarrow 2} 3 x+1=7$.
2.2. Consider the functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$. Show that if f and g are continuous in $a \in \mathbb{R}$, then $(f+g)$ is also continuous in a.
2.3. Let $f(x)=x^{2}$. Prove by the definition that: $\frac{d f(x)}{d x}=2 x$.
2.4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$. Show that $\frac{f(a)-f(x)}{a-x}=\frac{f(x+h)-f(x)}{h}$, with $h=a-x$.
2.5. Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable functions and $k \in \mathbb{R}$. Show that:
a) $\frac{d}{d x}[f(x)+g(x)]=\frac{d f(x)}{d x}+\frac{d g(x)}{d x}$.
b) $\frac{d}{d x}[k f(x)]=k \frac{d f(x)}{d x}$.

3 Problems and modelling

3.1. The stock price for the following companies is given with respect to time t by:

- Company A : $2 t^{2}+4 t$
- Company B: $3 t^{2}+t$
- Company $C: \frac{2 t}{t^{2}+1}$.
a) At $t=1$ which company has the fastest growing stock price?
b) In what period of time the stock price of C is growing?
3.2. Study the domain, continuity and diferentiability of:
a) $f(x)= \begin{cases}\frac{\sin x}{x} & \text { se } x \neq 0 \\ 1 & \text { se } x=0\end{cases}$
b) $g(x)=\left\{\begin{array}{ll}\frac{e^{x}-1}{x} & \text { se } x<0 \\ \ln \left(1+x^{2}\right) & \text { se } x \geq 0\end{array}\right.$.
3.3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Solve the equation: $\frac{d f(x)}{d x}=f(x)$.
3.4. Book:
7.8: 4;
6.7: 8;
6.9: $9,10$.

4 Additional exercises

4.1. Determine the domain of:
a) $f(x)=\frac{1}{x+3}$
b) $g(x)=\frac{x}{x^{2}+1}$
c) $h(x)=\ln (3-2 x)$
d) $i(x)=\sqrt{x^{2}-25}$
e) $j(x)=\frac{1}{\sqrt{x^{2}-4}}$
f) $k(x)=\ln (\ln x)$
g) $l(x)=\frac{1}{\ln (1-|x-1|)}$
h) $m(x)=\frac{\ln \left(4-x^{2}\right)}{\sqrt{e^{x}-1}}$.
4.2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a two times differentiable function. Solve the equation: $\frac{d^{2} f(x)}{d x^{2}}=-f(x)$.
4.3. Book:
7.8: 2, 3, 5;
7.9: 1 to 3 ;
6.5: 5;
6.7: 6, 7;
6.9: $1,3,7$.

