Week 7: Chap. 5 – Real functions, and Chap. 6 – Variations

Direct applications 1

1.1. Book:

6.5: 1, 4.

1.2. Sketch the graph of the following functions:

- a) $-x^2$ b) $-\sqrt{x}$ c) e^x d) $\ln x$ e) $\frac{1}{x}$ f) $\sin x$ g) $\cos x$

h) $\tan x$

i) ax + b with $a, b \in \mathbb{R}$ j) |x + 5| k) $\ln(x - 5)$

- ℓ) an odd function.

1.3. Compute the derivative with respect to x of the functions in questions a) to i) in 1.2.

1.4. For which values of a and b the function $f(x) = \begin{cases} ax - 2 & \text{se } x \leq 1 \\ b - 2x^2 & \text{se } x > 1 \end{cases}$ is continuous?

1.5. Let $f(x) = e^x$, $g(x) = x^n$ with $n \in \mathbb{Z}$, and $h(x) = \sin x$. Compute:

$$a)\frac{d}{dx}\left[f(x)+g(x)+h(x)\right] \quad b)\frac{d}{dx}\left[5f(x)+2g(x)\right] \quad c)\frac{d}{dx}\left[g(x)h(x)\right]$$

$$d)\frac{d}{dx}\left[f(x)g(x)h(x)\right] \qquad e)\frac{d}{dx}\left[\frac{h(x)}{f(x)}\right] \qquad f)\frac{d}{dx}\left[\frac{g(x)h(x)}{f(x)}\right].$$

$$e)\frac{d}{dx}\left[\frac{h(x)}{f(x)}\right]$$

$$f)\frac{d}{dx}\left[\frac{g(x)h(x)}{f(x)}\right]$$

1.6. Let $f(x) = \sqrt{x}$.

a) Find the domain of f and discuss its continuity and differentiability. b) Compute: $\frac{df(x)}{dx}$, $\frac{d^2f(x)}{dx^2}$ and $\frac{d^3f(x)}{dx^3}$.

2 Definitions and proofs

2.1. Prove by the definition that: $\lim_{x\to 2} 3x + 1 = 7$.

2.2. Consider the functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$. Show that if f and g are continuous in $a \in \mathbb{R}$, then (f+g) is also continuous in a.

2.3. Let $f(x) = x^2$. Prove by the definition that: $\frac{df(x)}{dx} = 2x$.

2.4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$. Show that $\frac{f(a) - f(x)}{a - x} = \frac{f(x + h) - f(x)}{h}$, with h = a - x.

2.5. Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable functions and $k \in \mathbb{R}$. Show that:

a)
$$\frac{d}{dx} [f(x) + g(x)] = \frac{df(x)}{dx} + \frac{dg(x)}{dx}.$$

b)
$$\frac{d}{dx} [kf(x)] = k \frac{df(x)}{dx}$$
.

Problems and modelling 3

- **3.1.** The stock price for the following companies is given with respect to time t by:
 - Company A: $2t^2 + 4t$
 - Company $B: 3t^2 + t$
 - Company $C: \frac{2t}{t^2+1}$.
- a) At t=1 which company has the fastest growing stock price?
- b) In what period of time the stock price of C is growing?
- **3.2.** Study the domain, continuity and differentiability of:

a)
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$$

a)
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$$
 b) $g(x) = \begin{cases} \frac{e^x - 1}{x} & \text{se } x < 0 \\ \ln(1 + x^2) & \text{se } x \geq 0 \end{cases}$

- **3.3.** Let $f:\mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Solve the equation: $\frac{df(x)}{dx} = f(x)$.
- **3.4.** Book:
- **7.8:** 4;
- **6.7:** 8;
- **6.9:** 9, 10.

Additional exercises 4

4.1. Determine the domain of:

$$a) f(x) = \frac{1}{x+3}$$

b)
$$g(x) = \frac{x}{x^2 + 1}$$

$$c) h(x) = \ln(3 - 2x)$$

d)
$$i(x) = \sqrt{x^2 - 25}$$

a)
$$f(x) = \frac{1}{x+3}$$
 b) $g(x) = \frac{x}{x^2+1}$ c) $h(x) = \ln(3-2x)$ d) $i(x) = \sqrt{x^2-25}$ e) $j(x) = \frac{1}{\sqrt{x^2-4}}$ f) $k(x) = \ln(\ln x)$

f)
$$k(x) = \ln(\ln x)$$

g)
$$l(x) = \frac{1}{\ln(1 - |x - 1|)}$$
 h) $m(x) = \frac{\ln(4 - x^2)}{\sqrt{e^x - 1}}$.

h)
$$m(x) = \frac{\ln(4-x^2)}{\sqrt{e^x - 1}}$$
.

- **4.2.** Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a two times differentiable function. Solve the equation: $\frac{d^2 f(x)}{dx^2} = -f(x)$.
- **4.3.** Book:
- **7.8:** 2, 3, 5;
- **7.9:** 1 to 3;
- **6.5**: 5:
- **6.7:** 6, 7;
- **6.9:** 1, 3, 7.