Week 9: Chap. 6 – Elasticity, Implicit differentiation, Inverse function

Direct applications 1

1.1. Compute the elasticity in order to x of: a) e^x b) $e^{\lambda x}$, with $\lambda \in \mathbb{R}$ c) $\frac{1}{x}$ d) $\cos(x^2)$.

1.2. Let $f(x) = \frac{1}{2}x^k h(x)$, with $k \in \mathbb{R}$ and h a differentiable function on its domain. Compute $El_x f(x)$.

1.3. Let f be twice differentiable on \mathbb{R} such that: $2x^2 + 6xf(x) + [f(x)]^2 = 18$. Compute $\frac{df(x)}{dx}$ and $\frac{d^2f(x)}{dx^2}$.

1.4. For each of the following functions, discuss on which intervals they are invertible, find the inverse function and sketch the graph:

- a) $\ln x$
- b) x^2 c) $\frac{1}{x}$
- $d) \sin x$
- e) $\tan x$.

1.5. Compute, using the derivative of the inverse function theorem, the derivative at 1 (if it exists) of the inverse functions obtained in exercise 1.4.

- **1.6.** Let $f(x) = x^2 e^x$.
- a) Determine the intervals where f has an inverse.

b) Let g(y) be the inverse function of f(x) and x_0 a point where there exists $f'(x_0) \neq 0$. Find the derivative of g at $y_0 = f(x_0)$.

2 Definitions and proofs

2.1. Let $f:\mathbb{R} \longrightarrow \mathbb{R}\setminus\{0\}$ be differentiable on \mathbb{R} . Given a change Δx on x, the function feels a

change $\Delta f(x) = f(x + \Delta x) - f(x)$. Prove that $\lim_{\Delta x \to 0} \frac{\frac{\Delta f(x)}{f(x)}}{\frac{\Delta x}{x}} = \frac{x}{f(x)} f'(x)$.

2.2. Let $f, g: \mathbb{R} \longrightarrow \mathbb{R} \setminus \{0\}$ be differenciable on their domain. By defining u = g(x), show that $El_x f[g(x)] = El_u f(u) \cdot El_x u.$

2.3. Let f be injective on $I \subseteq \mathbb{R}$, e $g = f^{-1}$. Write the equality relating f and g.

3 Problems and modelling

- **3.1.** In a powder chocolate factory, the production cost f of chocolate, expressed in \in /kg, depends on the price x of cacao, also in \in /kg, as given by: $f(x) = x^2 + 3$, for $x \ge 0$. Consider a scenario where the price of cacao changed from $1 \in /kg$ to $2 \in /kg$. Find the following:
- a) The absolute change of the cacao price.
- b) The absolute change of the chocolate price.
- c) The relative change of the cacao price.
- d) The relative change of the chocolate price.
- e) The absolute change rate of the chocolate price against the increase of the cacao price.
- f) The relative change rate of the chocolate price against the increase of the cacao price.
- g) Consider now an infinitesimal increase dx of cacao x. Compute the absolute change rate and the relative change rate (elasticity) of the chocolate price against the infinitesimal increase of cacao.
- **3.2.** Imagine that the gasoline consumption c of a car depends on its speed v like: c(v) = $v^3 + 2v + 5$ (clearly, $v \ge 0$).
- a) If the driver duplicates its speed, how does the gasoline consumption varies?
- b) Let f the function that gives us the speed depending on the gasoline consumption: that is, f[c(v)] = v. Compute f'(5).
- **3.3.** Find the equation of the tangent line to the graph of f, defined implicitly by the equation $\sin[xf(x)] = f(x)$, at $(\frac{\pi}{2}, 1)$.
- **3.4.** Let g(x) = f[xg(x)] implicitly defined on \mathbb{R} . Knowing that f'[g(1)] = 2, find g'(1)?
- **3.5.** Let $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ such that $f(x) = x^x$.
- a) It is exponential?
- b) Is it polynomial?
- c) Use $e^{\ln x} = x$ to compute f'.
- **3.6.** Book:
- **7.7:** 2, 6.

Additional exercises

- **4.1.** Find $L = \lim_{x \to 0^+} x^{5x}$:
 - a) L does not exist
- b) L = 1 c) $L = +\infty$ d) L = 0
- **4.2.** Knowing that $f(x) = x^3 + 2x 1$ admits an inverse function g and that f(1) = 2, find the slope of the tangent line to the graph of g at this point.
- **4.3.** Let f be differentiable with $f(x) \neq 0$. Determine the elasticity of:
- a) $x^5 f(x)$ b) $[f(x)]^{3/2}$ c) $x + \sqrt{f(x)}$ d) $\frac{1}{f(x)}$.

4.4. Differentiate:

- a) $\tan^2(\arcsin x)$

- b) $\arctan(x^2-1)$ c) $x^2 \arcsin x$ d) $\frac{1}{2}\arctan(e^{2x})$.

4.5. Book:

7.7: 5, 9;

7.1: 1, 6, 7, 8, 10;

5.3: 3, 5, 7, 9, 11;

7.3: 1 - 3.