## Week 11: Chap. 8 - Extremes and concavities

## 1 Direct applications

1.1. Book:
8.6: 4, 5;
8.7: 5, 6 .
1.2. Let $f(x)=x^{3}-4 x^{2}+4 x+12$.
a) Determine the stationary points of $f$.
b) Determine the extreme points of $f$ using the second derivative.
c) Find out if the extreme points are local or global.
1.3. Let $f: I \rightarrow \mathbb{R}$ such that $f(x)=\sin \left(x^{2}\right)$, with $I=[-\sqrt{\pi}, \sqrt{\pi}]$.
a) Determine the stationary points of $f$.
b) Determine the extreme points of $f$ using the second derivative.
c) Find out if the extreme points are local or global.
1.4. Let $f(x)=x^{4}, g(x)=-x^{4}$ and $h(x)=x^{3}$.
a) Determine the stationary points of each function.
b) Using the derivatives of order 2 or higher, determine if those points are minima, maxima or inflection points.
c) Determine the concavities of each function.
1.5. Is an inflection point always a stationary point?

## 2 Definitions and proofs

2.1. State the definition of increasing and decreasing functions.
2.2. State the definition of stationary point.
2.3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ have a second derivative continuous on $I$, and $a$ an interior point of $I$.
a) State the definition of inflection point of $f$.
b) Prove that if $a$ is an inflection point of $f$, then $f^{\prime \prime}(a)=0$.

## 3 Problems and modelling

3.1. A faulty freezer operates between $-3^{\circ} \mathrm{C}$ and $+2^{\circ} \mathrm{C}$, and it has an energy consumption that varies with the temperature $t$ as: $t^{3}+\frac{3}{2} t^{2}-6 t+10$.
a) Determine the temperatures for which the energy consumption is maximum and minimum.
b) Does the function energy consumption have an inflection point?
3.2. Let $f(x)=\left\{\begin{array}{rr}(x+2)^{2}, & x<-1 \\ |x|, & -1 \leq x \leq+1 \\ e^{-x+1}, & x>+1\end{array}\right.$.
a) What is the domain of $f$ ?
b) Discuss the continuity and differentiability of $f$ in its domain.
c) Determine the stationaty points of $f$.
d) Determine the extreme points of $f$, indicating if local or global.
e) Determine the extreme points of $f$ in $[-4,-1]$.
3.3. Consider $f(x)=x \sin x$.
a) Find the Taylor polynomial of second degree of $f$ around 0 .
b) The function $f$ has a unique stationary point in $]-1,1[$. Determine it.
c) Classify this stationary point using the second derivative.
d) Is there any extreme points of $f$ in $]-1,1[$ ?

## 4 Additional exercises

4.1. Let $f$ be the function and $I$ the interval in exercise 1.3. Show that $f$ has at least two inflection points in $I$.
4.2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $a \in \mathbb{R}$ such that $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Prove that $a$ is a local maximum of $f$.
4.3. Book:
8.6: 1, 3, 6;
8.7: 2 to 4 .

