Maths I

Week 12: Chap. 9 – Integrals and areas (Part I)

1 Direct applications

1.1. Compute the following anti-derivatives:

a)
$$\int x^2 dx$$
 b) $\int \sqrt{x} dx$ c) $\int e^x dx$ d) $\int \cos y dy$ e) $\int \frac{x^5}{5} dx$ f) $\int \frac{1}{2\sqrt{x}} dx$
g) $\int \frac{1}{2} dx$ h) $\int x^4 dt$ i) $\int (\sin u + x^2) dx$ j) $\int (\sin u + x^2) du$ k) $\int e^{7u} dx$ $\ell) \int \frac{1}{2} dt$

1.2. Compute the anti-derivative $F(x) = \int f(x)dx$: a) such that F(2) = 0, for $f(x) = x^4$; b) such that F(0) = 1, for $f(x) = e^x$; c) such that $F(1) = \pi$, for $f(x) = x^{-1}$; d) such that F(0) = e, for $f(x) = x^3 - 4x^2 + 4x + 12$; e) such that F(1) = 0, for $f(x) = (1 - x^2)^{-\frac{1}{2}}$.

1.3. Compute the following integrals:

a)
$$\int_{0}^{2} x^{3} dx$$
 b) $\int_{1}^{0} (-\sqrt{x}) dx$ c) $\int_{0}^{\ln 1} e^{-t} dt$ d) $\int_{-\pi}^{\pi} \cos y dy$ e) $\int_{0}^{1} \frac{1}{1+x^{2}} dx$
f) $\int_{-1}^{1} (6x^{5} + \frac{1}{3}x^{2} - 2x + 7) dx$ g) $\int_{2}^{3} (\sin u + x^{\frac{1}{3}}) dx$ h) $\int_{e}^{7e} e^{7u} dx$ i) $\int_{a}^{b} 1 dt$.

1.4. Find the area between the graph of f and the x-axis for: a) $f(x) = x^2$ and $x \in [0, 2]$ b) $f(x) = -x^2$ and $x \in [0, 2]$ c) $f(t) = e^{-t}$ and $t \in [1, 5]$ d) $f(x) = -\sqrt{\sqrt{x}}$ and $x \in [0, 1]$ e) $f(x) = \frac{-x^4 - 2x^2}{x}$ and $x \in [-1, 1]$

2 Definitions and proofs

2.1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function on \mathbb{R} , and $a, b, \lambda \in \mathbb{R}$ constants. Show that: a) $\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$. b) $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$. c) $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$, with $a \le c \le b$. **2.2.** Let $f:\mathbb{R}\longrightarrow\mathbb{R}$ be an odd continuous function, and $k\in\mathbb{R}$.

a) Prove that $\int_{-k}^{k} f(x) dx = 0.$

b) Interpret geometrically the previous result.

2.3. Let $a, b \in \mathbb{R}$ such that a < b, and d(a, b) the distance between these two points.

a) Show that $d(a,b) = \int_a^b dx$.

b) Interpret geometrically the previous result.

3 Problems and modelling

3.1. An oil well has an extraction rate (measured in barrels by unit of time) that varies with time t according to: $10e^{-2t}$.

a) What is the amount of oil extracted from the well at time t = 50? b) Solve the same problem for the rate 2^{-t} .

3.2. Let f(x) = sin x. Find the area between the graph of f and the x-axis for:
a) x ∈ [0, π/2]
b) x ∈ [-π/2, 0]
c) x ∈ [-π/2, π/2]
d) Discuss the results from the geometrical point of view.

e) Discuss the results from the point of view of exercise 2.2.

3.3. Let $f(x) = x^3 - 4x^2 + 4x$. Compute the area between the graph of f and the x-axis for $x \in [-1, 2]$.

4 Additional exercises

4.1. Book:9.1: 1 to 9;9.2: 1 to 6, 8.