Mathematics 1

$1^{\text {st }}$ Semester 2008/2009

FINAL EXAM January 8, 2009
2 hours, 2 points per question
No consultation, no calculators
(1) Consider the function $y=f(x)$ implicitly defined by the equation

$$
x+\ln y+y^{2}=3
$$

and satisfying $f(2)=1$. Determine the tangent line to the graph of f at the point $x=2$.
(2) Compute the first order Taylor approximation of the function $f(x)=x^{x}$ around $a=1$.
(3) Let f, g be differentiable functions in their domains. Assume also that $g(1)=e, g^{\prime}(1)=0$ and $f(1)=f^{\prime}(1) \neq 0$. Find the elasticity of

$$
F(x)=f\left(\frac{g(x)}{e^{x}}\right)
$$

at the point $x=1$.
Hint: Recall that the elasticity of a function h is given by the formula $E l_{x} h=x h^{\prime}(x) / h(x)$.
(4) For each a, compute the value of

$$
\sum_{n=1}^{+\infty} \frac{a^{n}}{2^{n-1}}
$$

(5) Suppose that there is a function f satisfying the following properties:
$f^{\prime \prime}(x)=\frac{e^{x}}{\left(e^{x}-1\right)^{2}}, \quad \lim _{x \rightarrow+\infty} f^{\prime}(x)=-1, \quad \lim _{x \rightarrow-\infty} f(x)=0$.
(a) Find its derivative f^{\prime}.
(b) Find f.
(6) Let

$$
f(x)=\frac{x^{5}}{x^{6}+5} .
$$

(a) Find an antiderivative of f.
(b) Determine the area delimited by the graph of f and the lines $y=0, x=0$ and $x=1$.
(7) Determine the values of a such that the following matrix is invertible:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & -1 & 2 & 0 \\
2 & 0 & 0 & 4 \\
0 & -1 & 0 & 0
\end{array}\right]
$$

(8) Solve

$$
\left\{\begin{array}{l}
x+2 y-z=1 \\
-x-y+2 z=0 \\
x+y+2 z=1
\end{array}\right.
$$

Mathematics 1

$1^{\text {st }}$ Semester 2008/2009

FINAL EXAM January 27, 2009

2 hours, 2 points per question
No consultation, no calculators
(1) Define a function F by

$$
F(x)=\int_{1}^{x} \frac{\ln t}{t^{3}} d t
$$

(a) Compute $F(e)$.
(b) Determine the tangent line to the graph of F at $x=e$.
(2) Compute the second order Taylor approximation of the function $f(x)=x^{x}$ around $a=1$.
(3) Let f, g be positive differentiable functions in their domains. Assume also that $g^{\prime}(1)=0$. Find the elasticity of

$$
F(x)=f\left(\frac{1}{g(x)}\right) e^{x}
$$

at the point $x=1$.
Hint: Recall that the elasticity of a function h is given by the formula $E l_{x} h=x h^{\prime}(x) / h(x)$.
(4) For each a, compute the value of

$$
\sum_{n=1}^{+\infty}(a-4)^{n} \frac{2}{3^{n-1}}
$$

(5) Let

$$
f(x)=x e^{-4 x}
$$

(a) Find an antiderivative of f.
(b) Compute the area delimited by $y=0, x=0$ and the graph of f.
(6) Without using antiderivatives, compute the limits:

$$
\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \ln \left(t^{2}+1\right) d t}{x^{3}} \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \cos (t) d t}{x^{2}}
$$

(7) Find the inverse of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
-1 & 1 & 1 & 1 \\
2 & 0 & 2 & 1 \\
0 & 0 & 1 & -3
\end{array}\right]
$$

(8) Solve

$$
\left\{\begin{array}{l}
x+y+z+w=0 \\
x+3 y+2 z+4 w=0 \\
2 x+y-w=0
\end{array}\right.
$$

Departamento de Matemática

Mathematics 1

$1^{\text {st }}$ Semester 2009/2010

FINAL EXAM January 11, 2010
2 hours, No consultation, no calculators
(1) Compute:
(a) (1.0) the determinant of the matrix

$$
\left[\begin{array}{cccc}
0 & 0 & b & 0 \\
a & 0 & 0 & 0 \\
0 & -b & 0 & 0 \\
0 & 0 & 0 & c
\end{array}\right] .
$$

(b) (1.0) the value of

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}}{2-2 \cos x+2 x^{2}}
$$

(c) (1.0) for each $x \in \mathbb{R}$ the value of

$$
\sum_{n=0}^{+\infty}\left(\frac{1-3 x}{5}\right)^{n}
$$

(2) (1.0) Let $f(x)=\frac{3}{2} x^{-k} g(x)$ where g is a differentiable realvalued function in \mathbb{R}, and $k \in \mathbb{R}$. Show that the elasticity $E l_{x} f$ of f at x is given by $-k+E l_{x} g$.
(3) Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 1 \\
0 & 1 & \alpha
\end{array}\right], \quad b=\left[\begin{array}{c}
1 / 3 \\
\beta \\
-1
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

with $\alpha, \beta \in \mathbb{R}$ and $x \in \mathbb{R}^{3}$.
(a) (2.0) Classify the system $A x=b$ in terms of the values of α and β.
(b) (1.0) Solve this system for $\alpha=-4$ and $\beta=-1$.
(c) (0.5) For which values of α the rows of A are linearly independent?
(4) Consider the function $f(x)=x \sin x$.
(a) (1.0) Write its Taylor polynomial of second order around the point 0 .
(b) (1.0) The function f has a unique stationary point inside the interval $]-1,1[$. Find it.
(c) (1.0) Classify the stationary point obtained in the previous question, by studying the second derivative.
(d) (1.0) Are there other extreme values of f in the interval] $-1,1[$?
(e) (1.5) Compute one antiderivative of f.
(5) Given $k>0$, consider the function

$$
f(x)= \begin{cases}e^{x}, & x<0 \\ e^{-k x}, & x \geq 0\end{cases}
$$

(a) (1.0) Find the domain of f and discuss the continuity of the function.
(b) (1.0) Using the definition of derivative, study the differentiability of f at the point 0 .
(c) (1.0) Show that f is invertible in the open interval $] 0,+\infty[$.
(d) (1.0) Take g to be the inverse function of f in $] 0,+\infty[$. Find $g^{\prime}(1 / k)$.
(e) (1.5) Compute the area between the graph of f and the x-axis.
(6) (1.5) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ differentiable functions and $a \in \mathbb{R}$. Prove that

$$
\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) \frac{d g}{d x}(x) .
$$

Mathematics 1

$1^{\text {st }}$ Semester 2009/2010

FINAL EXAM January 27, 2010
2 hours, no consultation, no calculators
(1) (1.0) Let $u=(1,0,2,0)$ and $v=(\alpha, 1,1, \pi)$ with $\alpha \in \mathbb{R}$. Determine the value of α for which u and v are orthogonal.
(2) Compute:
(a) (1.0)

$$
\frac{d}{d x} \int_{0}^{x^{2}} e^{t} d t
$$

(b) (1.0)

$$
\sum_{n=0}^{+\infty}\left[\left(-\frac{1}{2}\right)^{n}+\left(\frac{1}{2}\right)^{n}\right]
$$

(3) (1.0) Let A, B, P and X be matrices $n \times n$ such that $\operatorname{det} P \neq 0$. Find the solution of the equation $P X+A B=0$ with respect to X.
(4) Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -\alpha \\
-1 & 0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2 \\
\beta
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right],
$$

with $\alpha, \beta \in \mathbb{R}$ and $x \in \mathbb{R}^{3}$.
(a) (2.0) Classify the system $A x=b$ in terms of the values of α and β.
(b) (1.0) Solve this system for $\alpha=0$ and $\beta=1$.
(5) Consider the vectors $v_{1}=(1,0,0), v_{2}=(0,1, k)$ and $v_{3}=$ $(0,0,1)$, where $k \in \mathbb{R}$.
(a) (1.0) Determine if these vectors are linearly independent.
(b) (0.5) Compute the distance between v_{1} and v_{2}.
(6) Consider the function $f(x)=x^{5}$.
(a) (1.5) Sketch the graph of f, determining and classifying its stationary points.
(b) (1.0) Given $k>0$, compute the area between the graph of f and the x-axis for $x \in[-k, k]$.
(c) (1.0) Given $k>0$, compute $\int_{-k}^{k} f(x) d x$.
(d) (2.0) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ two-times differentiable on \mathbb{R} and such that $g(0) \neq 0$. Knowing that 0 is a stationary point of g and that $g^{\prime \prime}(0)>0$, show that 0 is a local minimum of $h=f \circ g$.
(7) Let $f(x)=\sqrt{x}$.
(a) (1.5) Find the linear approximation to f around 1 and use it to obtain an approximation of $\sqrt{1.1}$.
(b) (1.5) Compute $\int_{0}^{\pi^{2}} \frac{\cos f(x)}{f(x)} d x$.
(c) (1.5) Determine

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin f(x)}{f(x)}
$$

(8) (1.5) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$a differentiable function on its domain and $p \in \mathbb{R}$. Show that

$$
E l_{x}[f(x)]^{p}=p E l_{x} f(x)
$$

