Universidade Técnica de Lisboa – ISEG Departamento de Matemática

Mathematics 1

 $1^{\rm st}$ Semester 2010/2011

FINAL EXAM

January 24, 2011

2 hours, No consultation, No calculators

- 1. (1.5) Let $\vec{u} = (1, 2, 0, k)$ and $\vec{v} = (3, -1, -1, -1)$. Find k such that \vec{u} and \vec{v} are orthogonal.
- 2. (1.5) Let $f: \mathbb{R} \to \mathbb{R}^+$ be a differentiable function on its domain. Compute $El_x \frac{1}{f(x)}$.
- 3. (1.5) For each value of $\beta \in \mathbb{R}$ find

$$\lim_{x \to 1} \frac{x^3 - 3\beta x + 3\beta - 1}{(x-1)^2}.$$

- 4. (1.5) Decide if the function $f(x) = \sqrt{x + \alpha}$, with $\alpha \in \mathbb{R}$, is linear or non-linear.
- 5. Given $\alpha, \beta \in \mathbb{R}$, consider the linear system of equations:

$$\begin{cases} x+y+z=1\\ 2x+5z=1\\ x-y+\alpha z=\beta \end{cases}$$

- a. (2.0) Classify this system depending on α and β .
- b. (1.0) Solve this system for $\alpha = 0$ and $\beta = 0$ using Cramer's rule.
- 6. (1.0) Let $\vec{u}, \vec{v} \in \mathbb{R}^n$. Show that $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.

- 7. (1.0) Let A, B, C, X be $n \times n$ matrices and let I be the $n \times n$ identity matrix. Assuming that C and A B are invertible, solve the equation AXC = BXC + I with respect to X.
- 8. (1.5) Consider the series

$$\sum_{n=0}^{+\infty} \left(\frac{3x+2}{3}\right)^n.$$

Discuss for which values of x the series converges, and compute its sum whenever possible.

- 9. Consider the function $g(x) = e^{(x^2+1)}$.
 - a. (0.5) Find the domain of g and discuss its continuity.
 - b. (1.0) Determine the stationary points of g.
 - c. (1.0) Determine the extreme points of g using the second derivative.
 - d. (0.5) Study the concavity of g.
 - e. (0.5) Discuss if the above extreme points are global.

f. (1.5) Compute
$$\int_0^1 xg(x) dx$$
.

10. Recall that

$$\frac{d}{dx}\left(\arctan x\right) = \frac{1}{1+x^2}$$

- a. (1.5) Estimate the value of $\arctan(0.1)$.
- b. (1.0) Give an upper bound for the approximation error.