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∗Zentrum für interdisziplinäre Forschung, Universität Bielefeld,
Wellenberg 1, 33615 Bielefeld, Germany

vilela@cii.fc.ul.pt

R. LIMA∗
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The statistical properties of a stochastic process may be described (1) by the expectation
values of the observables, (2) by the probability distribution functions or (3) by prob-
ability measures on path space. Here an analysis of level (3) is carried out for market
fluctuation processes. Gibbs measures and chains with complete connections are consid-
ered. Some other topics are also discussed, in particular the asymptotic stationarity of
the processes and the behavior of statistical indicators of level (1) and (2). We end up
with some remarks concerning the nature and origin of the market fluctuation process
and its relation to the efficient market hypothesis.
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1. Introduction

When a physical phenomenon is measured with a set of instruments, what we

register is a sequence of values of some variable X

· · ·X−2X−1X0X1X2 · · ·

which takes values in a space Y . We will call Y the state space and the space

of sequences Y Z the path space. Statistical properties of the phenomenon may be

described at three different levels:
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(1) By the expectation values of the observables;

(2) By the probability measures on the state space Y ;

(3) By the probability measures on path space Y Z .

One obtains three different characterizations of the phenomenon which represent

successively finer levels of description of the statistical properties. Borrowing a

terminology used in large deviation theory [1, 2], we will call these three types of

description, respectively, level 1, 2 and 3-statistical indicators.

To obtain expectation values and probability measures we would require infinite

samples and a law of large numbers. For any finite sample we obtain finite versions

of the expectation values, of the probability on state space and of the probability

on path space which are called the mean partial sums, the empirical measures

(or empirical probability distribution functions — pdf’s) and the measures on the

empirical process.

Level-1 and level-2 analysis are the most common ones and their statistical indi-

cators the most commonly quoted when a stochastic process is analyzed. However

to the same expectation values for the observables or to the same pdf’s, different

processes may be associated. Therefore full understanding of the process requires

the determination of the level-3 indicators. Recent advances have been obtained

on the identification of processes, especially in connection with the analysis of hy-

drodynamic turbulence data [3–8]. In particular it has been clarified that analysis

and reconstruction of the process involves two different but related steps. One is

the identification of the grammar of the process, that is, the allowed transitions

in the state space or the subspace in path space that corresponds to actual orbits of

the system. The second step is the identification of the measure, which concerns the

occurrence frequency of each orbit in typical samples. Although largely independent

from each other, this two features have a related effect on the constraints they

impose on the statistical indicators.

Identification of grammars and measures (in particular Gibbs measures) has

been dealt with recently, in particular in the context of hydrodynamic turbu-

lence and other dynamical systems. Market fluctuations is an interesting stochastic

process. Some analogies have been found between this process and some of the fea-

tures of turbulence data [9, 10]. However, when statistical indicators are computed,

it turns out that the two processes are different [11–13]. Nevertheless the statisti-

cal tools that have been developed for turbulence are mathematical devices which

are not process-dependent and they may be applied to any stochastic process. Of

course, underlying this approach is the working hypothesis that statistical methods,

by themselves, are an appropriate tool to describe and reconstruct the market fluc-

tuation process. This hypothesis underlies the modern view of the efficient market,

namely the idea that overreactions and underreactions of the market are also a

random process [14]. In this view, the expected value of abnormal returns would be

zero. Contrariwise, if a well defined deterministic pattern of over- and underreaction

is ever found then, in addition to chance, a behavioral component [15, 16] must be
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included in any description of the market. Behavioral trends, however, may turn

out not inconsistent with a pure statistical description if the different reaction times

of the market agents are taken into account, as well as the secondary reactions of

the agents to each other moves [17].

The emphasis on this paper will be on level-3 analysis and on the reconstruction

of the processes. Nevertheless we have also dedicated some time to the computation,

for market fluctuations, of the level-1 and level-2 statistical indicators used in the

past for turbulence data. In particular the behavior of some of these indicators

already provides information on the nature of the grammars. This analysis is carried

out in Sec. 3. Section 4 is dedicated to the search for a Gibbs measure and, once

the long-memory features of the market process are exhibited, Sec. 5 attempts to

describe the process in the framework of chains with complete connections.

However, the first step in the analysis of any stochastic process is to inquire

about the stationarity of the process and whether typical samples are available.

This is the subject of the next section.

2. Is There an Asymptotically Stationary Market

Fluctuation Phenomenon?

Large samples of high-frequency finance data are now available. However high-

frequency data may not be the more appropriate data to begin understanding the

stochastic process that underlies the market mechanism. This is because, when com-

paring minute to monthly variations for example, one is comparing systems with

very different compositions, trading agents operating on the minute scale being in

general different from those operating in longer time scales. This is evidenced, for

example, by the different scaling laws for low and high-frequency data. In market

data one faces a complexity versus statistics trade-off. The high frequency data

certainly provides better statistics but it also involves the interplay of many more

reaction time scales and market compositions in the trading process. For this rea-

son, to “purify” as much as possible our samples, we have decided to concentrate

on daily data. The price to be paid for this choice is the fact that, as compared

for example with a large scale hydrodynamics experiment, the available amount

of one-day market fluctuation data is relatively small. If, in addition, the data

were non-stationary, the chances to obtain a reliable statistical analysis would be

rather slim.

Reliable application of statistical mechanics tools to any kind of signal, presup-

poses that two conditions are fulfilled. First, that the process that generates the

data has some kind of underlying stationarity or asymptotic stationarity. Second,

that the time sequence that is presented to the analysis is a typical sample for the

process. The second condition, of course, we can only hope that it is realized and

to improve our belief in this condition several different signals of a similar nature

should be analyzed (several different stocks, or currencies or markets). As to the

first condition it requires some preprocessing of the data. We will concentrate in
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Fig. 1. Daily price fluctuation data.

this paper in the daily fluctuation data of industrial stocks and indexes and the

objective is to try to extract the features of the market process that acts on them.

We look at each stock as an experimental probe that, while reacting to the market

pressures, may reveal some of the mechanisms of the market process.

Market prices are by nature non-stationary entities. They fluctuate, they have

general trends that depend on the general state of the economy, on the total amount

of capital flowing to the market, on the general acceleration of the economy, on

long and medium term political decisions and expectations, etc. Nevertheless, our

hypothesis is that, if all these global factors are extracted from the data, there are

still some invariant features that characterize this peculiar human phenomenon.

The type of data that will be analyzed is displayed in Fig. 1 that shows daily

price data p(t) for three stocks and for the NYSE composite index. Its non-

stationary nature is very apparent. The first step is to extract the general trend.

This is done, in a smooth way by a polynomial fit q(t) (Fig. 2 shows an example,

where a 7-degree polynomial is used). Figure 3 shows the difference p(t) − q(t).

Clearly the data is still very far from stationary because, due to the market volume

acceleration, recent fluctuations carry a much larger weight. Therefore the last step

is a rescaling of the data, by the average 〈p(t)〉, that is

x(t) = p(t)
〈p(t)〉
q(t)

(1)
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Fig. 2. Detrending by a polynomial.
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Fig. 3. Detrended data.
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Fig. 4. Detrended and rescaled data.

are the signals to be analyzed. They are shown in Fig. 4. To anyone used to examine

turbulence data, it looks as if the market signals are now somewhat stable. That

does not mean, of course, that they are stationary in the strict sense. However

it suggests that in spite of currency adjustments, increased number of players,

trade volumes and other macroeconomic indicators, there is something more or less

permanent in this human game.

Detrending and rescaling of the data is important because we will be analyzing

price differences over large time intervals. For one-day differences of log-price, the

results would be identical to those obtained from the raw data. Detrending and

rescaling the data, the overall amplitude of price fluctuations becomes reasonably

uniform over the time span of the data. However the process is not (locally) station-

ary, as seen in Figs. 5 and 6 that show the strong variation in time of the volatility

(here defined as the standard deviation of the price fluctuations). The two figures on

the left show the standard deviation computed on a sliding time window of 10 days.

On the right one compares the cumulative standard deviation for the rescaled (full

line) and the non-rescaled data (dashed line). It is quite apparent that only the

rescaled data has the chance to belong to an asymptotically stationary process.

Once the data is detrended and rescaled there is in fact no evidence [18] for an

abnormal increase, in recent times, of the volatility in the underlying process.
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Fig. 5. Ten-days window volatility and comparison of asymptotic volatility for the rescaled and
non-rescaled data (IBM and BMW).
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A direct test of stationarity of the detrended and rescaled data was obtained by

coding with a 5-symbols alphabet (as explained in Sec. 4). Then, computing the

entropies of multi-symbol words, in the first and the second half of the samples, no

significant difference is found.

3. Statistical Indicators for Typical Samples

Here we concentrate on level-1 and level-2 analysis of the regularized samples dis-

cussed in Sec. 2, that is, we compute quantities related to averages values and to

probability distribution functions (pdf’s). The level-3 analysis of the processes will

be done in the latter sections.

The main variables that are used to construct the statistical indicators are the

differences of log-prices

r(t, n) = log p(t+ n)− log p(t) (2)

sometimes called the n-days return. For each experimental sample, three main

statistical indicators are computed:

(i) The maximum (over t) of r(t, n)

δ(n) = max
t
{r(t, n)} . (3)
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(ii) The moments of the distribution of |r(t, n)|

Sq(n) = 〈|r(t, n)|q〉 (4)

with 〈 〉 meaning the sample average.

(iii) If inside a certain range, the moments satisfy

Sq(n) ∼ nχ(q) , (5)

then the scaling exponent χ(q) is another important statistical indicator.

The results obtained from our detrended and rescaled samples are displayed in

Figs. 7 to 9. Figure 7 refers to δ(n) and Fig. 8 shows Sq(n) as a function of n for

different values of q (from top to bottom q = 1 to q = 8). The large fluctuations in

δ(n) for large values of n and in Sq(n) for large q are quite natural given the size

of the data samples.

In the range n = 2 to n = 60 the moments follow an approximate power law

of the type of Eq. (5) and from the behavior in this region we have extracted the

scaling exponent χ(q) shown in Fig. 9. The main conclusions from this analysis of

the statistical indicators are:

(a) δ(n) is log-concave, that is, log δ(n) is concave as a function of logn, increasing

and probably (with better statistics) being asymptotically constant for large r;
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(b) Sq(n) is also an increasing log-concave function of n, allowing a power law

approximation in a limited range;

(c) The scaling law χ(q) is an increasing concave function of q;

(d) For all samples, χ(1) computed in the scaling region (n = 2 to n = 60) is very

close to 0.5;

(e) The scaling properties of the NYSE index seem somewhat different from those of

the other stocks. However this is only apparent for q ≥ 5, where poor statistics

effects may already be felt.

From this analysis one also obtains precise statements concerning the similarities

and differences between hydrodynamic turbulence and the market fluctuation

process. Properties (a) to (c) are shared by the turbulence data, although the

numerical values of the statistical indicators are quite different. For example, for

turbulence data χ(1) = 1
3 whereas here χ(1) ≈ 0.5, showing the essentially uncor-

related nature of the signal for n ≥ 2. The correlation function of one-day returns

and its absolute value

C(r(1), T ) = 〈r(t+ T, 1)r(t, 1)〉 (6)



October 7, 2002 17:5 WSPC/104-IJTAF 00173

A Process-Reconstruction Analysis of Market Fluctuations 11

and

C(|r(1)|, T ) = 〈|r(t+ T, 1)| |r(t, 1)|〉 (7)

are shown in Fig. 10. One sees that for T ≥ 2 the returns are uncorrelated, their

correlation function remaining at the noise level. In contrast the correlation for the

absolute value remains non-negligible for a longer time (at least up to T = 10). This

means that although the returns are linearly uncorrelated, non-linear functions of

the returns remain correlated for longer periods.

The behavior of the statistical indicators δ(n), Sq(n) and χ(q) already has some

strong implications on the level-3 features of the process, namely on the structure

of its grammar. In fact, without restrictions on the allowed transitions δ(n) and

Sq(n) would be independent of n and χ(q) = 0 for all q. In particular, property

(a) implies that if the process is a topological Markov chain the transitions allowed

by the transition matrix T must lie inside a strictly convex domain around the

diagonal of T [5].

Figure 11 illustrates the dynamics of one-day returns

r(t, 1)→ r(t + 1, 1) . (8)

It shows that the bulk of the data consists of a central core of small fluctuations

with a few large flights away from this core. This structure of the data will have a

strong influence on the results obtained in the next section.
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4. Looking for a Gibbs Measure

Let us assume a coding of the dynamical system by a finite alphabet Σ. Then the

space Ω of orbits of the system are infinite sequences ω = i1i2 · · · ik · · ·, ik ∈ Σ, with

the dynamical law being a shift σ on these symbol sequences.

σω = i2 · · · ik · · · . (9)

Depending on the dynamical law of the coded system, not all sequences will be

allowed. The set of allowed sequences in Ω defines the grammar of the shift. The

set of all sequences which coincide on the first n symbols is called a n-cylinder (or

n-block) and is denoted [i1i2 · · · in]. The probability measures over the cylinders is

the main tool that is used to characterize the dynamical properties and is a piece

of information that may be inferred from the data.

A particularly important measure on the cylinders is the Gibbs measure defined

by [19, 20]:

c1 ≤
µ([i1(ω)i2(ω) · · · in(ω)])

exp(−nP + (Snφ)(ω))
≤ c2 (10)

with (Snφ)(ω) =
∑n−1
k=0 φ(σkω), φ being a Hölder continuous function on Ω called

the potential and P (φ,G) a function depending on the potential and the grammar

called the pressure of φ.
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The (equilibrium) Gibbs measure and the pressure bear an important relation-

ship to the entropy

h(µ) = lim
n→∞

Hn

n
= lim
n→∞

1

n

∑
i1···in

µ([i1i2 · · · in]) logµ([i1i2 · · · in]) . (11)

This is the variational principle that states that, for each potential and grammar,

the supη{h(η) +
∫
φdη} taken over all σ-invariant measures η is reached only for

the Gibbs measure µ and equals the pressure

P (φ,G) = h(µ) +

∫
φdµ . (12)

The potential may be chosen in such a way that P = 0. Such potential is called

a normalized potential. In this case we have the following result [7]

φ(ω) = lim
n→∞

log
µ([i1(ω) · · · in(ω)])

µ([i2(ω) · · · in(ω)])
. (13)

In principle this formula may be used to construct the potential using the empirical

measures µ̃([i1(ω) · · · in(ω)]) obtained from the experimental sample. The problem

is that Eq. (13) requires the use of blocks of length n as large as possible but, for

a finite sample, the statistics of such blocks suffers from large uncertainties.

For practical purposes the most important class of Gibbs measures is the one

associated to finite range potentials, that is, functions on Ω that depend only on the

first r symbols of a sequence ω ∈ Ω. The importance of finite range potentials lies

in the fact that they may be used to uniformly approximate any Hölder continuous

potential and, on the other hand, given a limited amount of experimental data,

only finite-range potentials may be reliably inferred from experiment.

An important property of range-r potentials is that for all values i1i2 · · · in with

n ≥ r [7],

µ([i1 · · · in]) =
µ([i1 · · · ir])µ([i2 · · · ir+1])× · · · × µ([in−r+1 · · · in])

µ([i2 · · · ir])µ([i3 · · · ir+1])× · · · × µ([in−r+1 · · · in−1])
. (14)

We will make use of this important relation in our attempt to look for a Gibbs

measure for the market fluctuation data. On the one hand the relation (14) allows

to express the entropy in terms of measures of cylinders of finite length only, namely

h(µ) = −
∑
i1···ik

µ([i1 · · · ik]) log
µ([i1 · · · ik])

µ([i1 · · · ik−1])
= Hk −Hk−1 (15)

for all k ≥ r if r > 1. If r = 1h(µ) = H1. Hk is the entropy associated to cylinders

of length k,

Hk = −
∑
i1···ik

µ([i1 · · · ik]) logµ([i1 · · · ik]) . (16)

This provides a criterium to find the range of the potential. Using the empirical

cylinder probabilities one computes Hk for successively larger k. Then, the range of

the potential is found when Hk −Hk−1 tends to a constant value. Once the range
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is found, the potential may be constructed directly from the empirical weights

µ̃([i1···ik ]).

Another important consequence of Eq. (14) is that for k > r,

µ([i1 · · · ik+1]) =
µ([i1 · · · ik])µ([i2 · · · ik+1])

µ([i2 · · · ik])
. (17)

We will use both the criterium following from Eqs. (15) and (17) to test for the

possibility to construct a Gibbs measure for the market fluctuation data.

A five-symbols code Σ

Σ = {−2,−1, 0, 1, 2} (18)

is used for the one-day return data r(t)

r(t) = log p(t+ 1)− log p+ (t) . (19)

The average r(t) and standard deviation s =

√
(r2(t)− r(t)2

) of the returns are

computed. Then,

(r(t) − r(t)) > s⇐⇒ 2 ,

s ≥ (r(t) − r(t)) > s

3
⇐⇒ 1 ,

s

3
≥ (r(t) − r(t)) > −s

3
⇐⇒ 0 ,

−s
3
≥ σ(r(t) − r(t)) > −s⇐⇒ −1 ,

−s ≥ (r(t) − r(t))⇐⇒ −2 .

(20)

This coding is used and the empirical frequencies µ̃([i1 · · · in]) for blocks of

successively larger order n are found. Of course n cannot be arbitrarily large because

of statistics. Results will not be reliable whenever 5n is larger than the size N of the

data sample. The statistical reliability may be directly tested either by comparing

the number of different occurring blocks and 5n or by observing the fall-off of the

empirically computed Hn −Hn−1.

First we try to estimate a possible range for the potential using the criterium

discussed above. The results are shown in Figs. 12 and 13 for the analyzed stocks

and the NYSE index. The plots on the left show the quantity Hk − Hk−1 and

the plots on the right compare the number p(k) of occurring blocks of size k in

the data with the maximum possible number, 5k. Already for k = 2 the difference

Hk−Hk−1 seems to stabilize, staying nearly constant until k = 4. After k = 4 it falls

off, reflecting the lack of statistics also apparent in the comparison of p(k) with 5k in

the right hand side plots. These results seem to suggest that the data is described

by a very short range potential. Notice that for a similar analysis performed on

hydrodynamic turbulence data the results are quite different with Hk−Hk−1 rising
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Fig. 12. Hk − Hk−1 and the number of occurring blocks of size k for r(t) process with the
5-symbols alphabet (IBM and Bayer).
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smoothly up to a certain saturation level and then decreasing when one reaches the

lack of statistics level.

To check whether the short-range potential suggested by this criterium is reliable

or whether it simply results from some misleading feature of the data, we have

performed the test following from Eq. (17). For successively higher k we estimate

µe([i1 · · · ik+1]) =
µ̃([i1 · · · ik])µ̃([i2 · · · ik+1])

µ̃([i2 · · · ik])

from the empirical µ̃([i1 · · · ik]) and µ̃([i1 · · · ik−1]), which is then compared with the

empirically observed µ̃([i1 · · · ik+1]). The standard deviation of the relative positive

errors

εk = max

(
0,

µ̃([i1 · · · ik+1])− µe([i1 · · · ik+1])
1
2 (µ̃([i1 · · · ik+1]) + µe([i1 · · · ik+1]))

)
(21)

is computed and the number of blocks for which this error is one and two standard

deviations above the mean is computed. The result is plotted in Fig. 14 where the

number of underestimation errors that are one (o) and two (∗) standard deviations

away from the mean error are compared with the total number p(k) of different

observed blocks of each length k.

One sees that the number of large deviation errors is very large and, identifying

the blocks for which these errors occur, one finds out that they all correspond to
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Fig. 14. Underestimation errors one (o) and two (∗) standard deviations away from the mean
and the total number p(k) of observed blocks.
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blocks involving large positive or negative r(t)’s (2 and −2). The conclusion is that

a short-range potential would describe the small fluctuations in the data, the large

fluctuations being badly described by it. The reason why the empirically found

difference Hk − Hk−1 seems to saturate for a small k is because, as is apparent

from Fig. 11, the bulk of the data consists mostly of small fluctuations plus a few

large flights. The saturation of Hk −Hk−1 for small k is a reflection of the largely

uncorrelated nature of the small fluctuations, whereas other features like the large

deviations, persistence of non-linear correlations (volatility), etc. are not captured

by a short-range potential.

Large deviations being misrepresented by an empirically constructed measure

is typical of situations where the actual measure is non-Gibbsian [21, 22]. In our

case, however, it may also occur that the measure is Gibbsian but with a long-range

potential. This would correspond to a sharp rise of Hk − Hk−1 at k = 2 followed

by a very slow increase above k = 2. In the empirical results a small increase may

be hidden by the fact that, as the block length increases, the statistics becomes

poorer. A large deviation analysis applied to the calculation of Hk, using a standard

technique [23] to construct the free energy and the deviation function from the data,

is consistent with this hypothesis.
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Fig. 15. Hk −Hk−1 for the |r(t)| process with a 3-symbols alphabet.
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The statistical dominance of the short-memory small fluctuations is apparent

even for the absolute value process |r(t)|, where long-range correlations were found

to occur (Fig. 10). This is seen in Fig. 15 where we have plotted Hk − Hk−1 for

the |r(t)| process with a 3-symbols alphabet {0, 1, 2}. Even in this case, a reliable

estimation of the potential range and construction of a Gibbs measure do not seem

possible.

In any case, whether a Gibbs measure exists or not, the finite-range potential

framework does not seem to be the more convenient way to describe the market

fluctuation process. In the next section we will explore another approach specially

suited to deal with long-memory processes.

5. Market Fluctuations as a Chain with Complete Connections

Processes with long memory have been studied in the past. Under certain condi-

tions, that is, when the dependence on the past does not decay too slowly, existence

and uniqueness of a well defined process may be proved. A particularly well estab-

lished framework is the one of chains with complete connections and summable

decays ([24–26] and references therein).

A stochastic process {Xn}n∈Z with alphabet Σ is said to be a chain with com-

plete connections (CCC) if the following conditions are satisfied:

(a) ∀ ai ∈ Σ,

P (X1 = a1, . . . ,Xn = an) > 0 . (22)

(b) The limit

lim
m→∞

P (X0 = a0|Xj = aj ,−m ≤ j ≤ −1)

= P (X0 = a0|Xj = aj , j ≤ −1) (23)

exists ∀ ai, j ≤ −1.

(c) There is a sequence (γm)m≥1 with limm→∞ γm = 0, such that for all {aj , bj ∈
Σ, j ≤ −1} with aj = bj for −m ≤ j ≤ −1,∣∣∣∣(P (X0 = a0|Xj = aj , j ≤ −1)

P (X0 = a0|Xj = bj , j ≤ −1)
− 1

)∣∣∣∣ ≤ γm . (24)

The process is said to be a chain with complete connections and summable decay

(CCCSD) if
∑
γm <∞.

Conditions (a) and (b) are implicitly assumed when we considered the processes

(and pre-processed the data) to be asymptotically stationary. As for the decays γm
they may be estimated from a typical sample of the process. From the empirical

probabilities for

P (a0|a1 · · · amA) =
P (a0a1 · · · amA)

P (a1 · · · amA)
, (25)
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where A is a block of arbitrary length, ones computes for each fixed set a0a1 · · · am
the maximum and the minimum over A,

g(a0a1 · · · am) =

(
maxA P (a0|a1 · · · amA)

minA P (a0|a1 · · · amA)
− 1

)
(26)

obtaining for γm

γm = max
a0a1···am

g(a0a1 · · ·am) . (27)

However if the statistics for very long blocks is poor, which is in general the case

for finite samples, the computation of the maximum from empirical data is not

reliable. A better estimate of the behavior of decay rates is obtained from the

following quantity, which smooths out the large fluctuations due to poor statistics

g(m) = g(a0a1 · · ·am) (28)

the average being taken over all sets a0a1 · · · am of size m.

The results obtained for the 5-symbols Σ-coded data of the detrended fluc-

tuations (BMW data) using A blocks of length 5 to 8 (×,+, o, ∗) is plotted in

Fig. 16. Similar results are obtained for the other data. The result is compatible with

exponential decay, which would probably imply the existence of a Gibbs measure

(albeit with a long range potential). The data for the maxima of g(a0a1 · · · am)

displays large fluctuations and slower decay. However, with the amount of available
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Fig. 16. g(m) computed using A blocks of length 5 to 8 (×,+, o, ∗).
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data it is not reliable for long blocks. In any case, in the present context of CCC-

processes, what the result suggests is the summability of the γm’s (
∑
m γm < ∞).

For practical purposes the most important consequence of this fact is that a

CCC-process with summable decays is the d̄-limit of its Markov approximations

of order k. The nature of this approximation should however be clearly understood.

The d̄-distance [27] between two processes refers not to the processes themselves

but to the process that implements the coupling of the two processes. A coupling

between two processes X = {Xn} and Y = {Yn} over the alphabet Σ is another

process {X̃n, Ỹn} defined over Σ×Σ such that the marginal probabilities of X̃ and

Ỹ coincide with those of X and Y . Then the d̄-distance between X and Y is

d̄(X,Y )= inf{P (X̃0 6= Ỹ0) : {X̃n, Ỹn} is a stationary coupling of X and Y } . (29)

For some types of coupling the two processes X̃ and Ỹ are know to coincide after a

certain random time. However, for the original processes X and Y , if the d̄-distance

tends to zero it does mean that the processes will coincide after a certain time.

It only means that it will occur for some other processes with the same marginal

probabilities.

This fact has an important bearing on the correct interpretation of the “perfect

simulation” schemes [26] proposed for CCC’s. Perfect simulation is always under-

stood in the d̄-distance sense and it does not mean perfect prediction. It simply

means that a process is constructed with the same conditional probabilities of

the original process, whenever the conditional probabilities of the original pro-

cess are known. In practice not all conditional probabilities involving infinite pasts

are needed, because going back to a regeneration time, only a finite number of

back steps are required. Several simulation schemes have been proposed for CCC’s

with summable decays. The most important one for the applications, when the

conditional probabilities are inferred from experiment, is the sequence of canonical

Markov approximations of finite order k (k-CMA). A k-CMA of a process X is a

Markov chain Y (k) of order k with conditional probabilities P (k) such that

P (k)(a0|a1 · · · ak) = P (a0|a1 · · · ak) =
∑
A

P (a0|a1 · · · akA) . (30)

For a CCC X with summable decays [25]

d̄(X,Y (k)) ≤ Cγk , (31)

C > 0 being a constant. Actually the property of the Markov approximation that

is essential for the approximation result (31) is

inf
A
P (a0|a1 · · ·akA) ≤ P (k)(a0|a1 · · · ak) ≤ sup

A
P (a0|a1 · · · akA) (32)

meaning that for Markov approximation schemes, other than the canonical one,

Eq. (31) holds provided (32) is satisfied. In fact, when the conditional probabilities

are inferred from limited experimental data a different Markov approximation is

more convenient.
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The following approximation scheme is proposed for the market fluctuation data,

which we call the ≤ k — Markov approximation:

(i) Empirical transition probabilities P̃ (a0|a1 · · · am) are inferred from the occur-

rence probability of blocks of order m+1 up to a certain order mMax. Of course,

only probabilities that correspond to blocks a1 · · ·am that appear in the data

will be available and especially for large m many will be missing.

(ii) For the simulation, with an approximation of order k, one looks at the current

block (a1 · · · ak) of order k and uses the k-empirical probability to infer the

next state a0. If that block has not appeared in the data, that was used to

construct the empirical probabilities, then one looks at the k − 1 sized block

a1 · · · ak−1 and uses the k − 1 order empirical probabilities. If necessary the

process is repeated until an available empirical probability is found. This is the

reason why this is called the ≤ k — Markov approximation.

This approximation scheme has been applied to the market fluctuation data and

for each k-order the successor a0 of each block (a1 · · ·ak) is compared with a pre-

diction ã0 obtained by throwing a random number with the empirical probabilities

P̃ (a0|a1 · · · ak). Figure 17 shows some of the results. In all cases the quantity that
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Fig. 17. The past predicting the future (o) and the future predicting the past (∗), 5-symbols
alphabet.
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is plotted is the averaged error magnitude

e = 〈|ã0 − a0|〉 (33)

the average being taken over the samples and 100 different runs. The two upper

plots and the left lower plot show the results obtained (for each approximation

order k) when half of the data for each company is used to predict the other half.

The points labelled (◦) correspond to the past used to predict the future and those

labelled (∗) to the future used to predict the past. Finally the right lower plot shows

the results obtained when ã0 is chosen at random. The main conclusions that may

be extracted from these results are:

• The average prediction obtained from using the empirical probabilities is better

than a random choice.

• However, the main improvement is a result of a correct accounting of the two-

symbol probabilities (k = 1).

• After the improvement due to the use of the lowest order blocks a small (but

consistent) improvement is found by using the past information up k = 4 or 5.

No significant improvement is obtained by using higher order approximations.

This is consistent with the poorer statistics of large blocks. Actually for each

individual simulation the result of using k > 5 leads to much larger fluctuations.

The main conclusion is that although the bulk of the data is represented by a

short-memory process, there is nevertheless evidence for a small long-memory com-

ponent that is captured by the higher-order Markov approximations. Depending on

the amount of data that is available to infer the empirical conditional probabili-

ties there is a maximum k = km that should be used for the simulation process.

This km value may be estimated from the quantity p(k) plotted in Figs. 12 and 13.

Finally, although a mild gain is obtained from using km-block probabilities rather

than one-symbol probabilities, it should be remembered that perfect simulation

in the d̄-distance sense is not perfect prediction for the actual process. This is a

point to keep in mind when attempting to develop any trading strategies based on

the empirical block probabilities.

We have also explored the use of the empirical probabilities of one company

to predict the behavior of the others. In all cases the improvement coming from

the one-symbol probabilities (as compared to random choice) is obtained. This

means that the one-symbol probabilities are similar in all companies. However

for the long-memory component the behavior is very much company-dependent.

For example there seems to be no correlation of this component between IBM

and the other two companies, with the prediction being actually worse when the

empirical probabilities for longer blocks are used. The same happens also when

the empirical probabilities of BMW and Bayer are used to predict IBM. However

there is some statistical correlation between the long-memory components (and

some mild prediction improvement) between BMW and Bayer. This suggests that

the statistical short-memory component of the market process might be similar for
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many different stocks, whether the long-memory component might be different from

market to market and to divide the stocks into classes. A similar conclusion follows

from the stocks taxonomy obtained by Mantegna [28], although that work does not

distinguish between the short- and long-memory components of the process.

In an attempt to distinguish between small and large fluctuations, we have also

analysed the data usung a 3−symbols alphabet {−1, 0, 1} with

(r(t) − r(t)) > s⇐⇒ 1 ,

s ≥ (r(t) − r(t)) > −s⇐⇒ 0 ,

−s ≥ (r(t) − r(t))⇐⇒ −1 ,

s being the standard deviation as in (20). With this coding, small fluctuations have

better statistics but the number of large events is the same as before.

As before, we have run a ≤ k — Markov approximation with half the data used

to predict the other half. The error magnitude averaged over 500 runs is shown in

Fig. 18. One notices a prediction improvement extending to block sizes longer than

before. This seems significant because, small fluctuation errors being decreased by

better statistics, the persistence of the improvement for longer blocks seems to put

into evidence the long-memory component.
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6. Conclusions

6.1 Statistical tools, originally developed to analyse turbulence, may be applied

to any stochastic process. However, it must be emphasized that, as already

noticed in the past [11–13], the statistical indicator values obtained for the

financial process are quite different from those of hydrodynamic turbulence. In

particaular the scaling exponent χ(q) and the k-dependence of Hk −Hk−1 are

quite different.

6.2 The bulk of the market fluctuation process seems to be a short-memory process.

In addition it has a small long-memory component, which however is very im-

portant for practical purposes because it is associated with the large fluctuations

of the returns.

6.3 Existence of the long-memory component suggests the chains with complete

connections and summable decays as the appropriate framework to describe

these processes. Although the decays may be exponentially converging, the lack

of accurate data concerning long blocks prevent an accurate description by a

finite range Gibbs potential.

6.4 The sequence of empirical based ≤ k — Markov approximations discussed in

Sec. 5 seems the most unbiased simulation of the process. Eventual convergence

in the d̄-distance sense is expected to hold because the market fluctuation pro-

cess seems to fit in the framework of chains with complete connections and

summable decays.

6.5 Except for cases where one is sure of the existence of a finite potential, Markov

approximations must always be used if only finite data is available. This is

true whether a Gibbs measure exists or not. What the chains with complete

connections framework provides though, is a rationale for the convergence of the

Markov approximations and a criterium to estimate, through the γm decays,

how good this approximation is. Notice however the trade-off between higher

order approximations and lack of statistics, that leads to an optimal block

length for the empirical probabilities to be used in the simulations.

6.6 As work for the future we point out that it would be interesting to analyze in

this framework the high frequency market data. Here however attention should

be paid to the possibly multi-scale and multi-component nature of the processes.
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