Week 6, Chap. 4 (cont.) - Inverse matrix and Chap. 5 - Sequences and series

1 Direct applications

1.1. Let M, P, Q, X be square matrices, with M invertible. The solution of the equation $X M+P=Q$ is $X=M^{-1}(Q-P)$: true or false?
1.2. Determine the inverse of the following matrices:
а) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 3 & 0\end{array}\right]$
b) $\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$, with $x, y, z \in \mathbb{R} \backslash\{0\}$.
1.3. Prove that the inverse of $\left[\begin{array}{ccc}1 & 1 & -3 \\ 2 & 1 & -3 \\ 2 & 2 & 1\end{array}\right]$ is $\left[\begin{array}{ccc}-1 & 1 & 0 \\ \frac{8}{7} & -1 & \frac{3}{7} \\ -\frac{2}{7} & 0 & \frac{1}{7}\end{array}\right]$.

2 Definitions and proofs

2.1. Let A be a matrix $n \times n$. Show that if A is invertible, then $|A| \neq 0$.
2.2. Prove that the inverse of a matrix, whenever exists, is unique.
2.3. Let A and B be invertible matrices and $\lambda \in \mathbb{R} \backslash\{0\}$. Show that the following properties hold:
a) $\left(A^{-1}\right)^{-1}=A$;
b) $(A B)^{-1}=B^{-1} A^{-1}$;
c) $(\lambda A)^{-1}=\frac{1}{\lambda} A^{-1}$.

3 Problems and modelling

3.1. Show that the vectors $\vec{a}=(1,1,0), \vec{b}=(0,1,1)$ and $\vec{c}=(1,0,1)$ are linearly independent:
a) using the definition of linear independence;
b) studying the rank of a matrix;
c) computing the determinant of a matrix;
d) determining if a matrix is invertible.
3.2. Recall problem 3.1 of week $2 / 3$: show that the matrix $R(-\theta)$ is the inverse of $R(\theta)$. Discuss this result from a geometrical point of view.
3.3. Recall problem 3.1 of week 5: write the respective system of equations as $A \vec{x}=\vec{b}$ and determine the solutions \vec{x} by the computation of A^{-1}.

4 Additional exercises

4.1. Let A be a symmetric and invertible matrix with dimension n such that $X^{\prime} A=B+A$. Then:
a) $X=B^{\prime} A^{-1}+I$
b) $X=A^{-1} B^{\prime}+I$
c) $X=\left(\frac{B+A}{A}\right)^{\prime}$
d) None of the above.
4.2. Consider A, B and C square matrices with dimension n. Knowing that: $|A+B|=$ $3,|C|=2$ and $(A X+B X)^{\prime}=C$, obtain X (depending on A, B and C) and compute its determinant.
4.3. Consider the matrix $A=\left[\begin{array}{cccc}1 & x & 0 & 1 \\ x & 1 & 0 & 0 \\ 0 & 0 & x & 1 \\ 0 & 0 & 1 & x\end{array}\right]$.
a) Show that its determinant is $-\left(1-x^{2}\right)^{2}$.
b) Find the values of x for which the matrix A does not have an inverse.

4.4. Book:

16.6: 2, 6;
16.7: 2, 5.

5 Direct application

5.1. Book:

10.4: 2-4.
5.2. Determine if the following series are convergent. If that is the case, find their values:
a) $\sum_{n \geq 0}\left(\frac{1}{2}\right)^{n}$
b) $\sum_{n \geq 1} 3^{n}$
c) $\sum_{n \geq 0}\left(\frac{2}{3}\right)^{n+2}$
d) $\sum_{n \geq 3}\left(\frac{1}{4}\right)^{2 n}$
e) $\sum_{n \geq 2} 5^{-n}$.

6 Definitions and proofs

6.1. Define:
a) Function
b) Real-valued function
c) Sequence
d) Series.
6.2. Prove that $\sum_{\ell=0}^{n-1} a k^{\ell}=a \frac{k^{n}-1}{k-1}$, where $a \in \mathbb{R}, k \in \mathbb{R} \backslash\{1\}$, and $n \in \mathbb{N}$.

7 Problems and modelling

7.1. Determine the values of $x \in \mathbb{R}$ for which the following series converge and compute their values:
а) $\sum_{n=1}^{\infty}\left(1-x^{2}\right)^{n}$
b) $4 x^{2}+16 x^{4}+64 x^{6}+\ldots$
7.2. Use the theory of the geometric series to write the following numbers as irreducible fractions:
a) $0,999 \ldots$
b) $1,666 \ldots$
c) $0,1212 \ldots$
7.3. Book:
10.4: 6, 7.

8 Additional exercises

8.1. Consider the series $\sum_{n=2}^{\infty} \frac{a n^{2}+n}{n^{2}-1}$, with $a \in \mathbb{R}$. Find the correct answer:
a) if $a \neq 0$, then the series diverges
b) if $a \neq 0$, then the series converges
c) the series is convergent, $\forall a \in \mathbb{R}$
d) the series is convergent for $a=1$.
8.2. Compute $\sum_{n=0}^{\infty}\left[\left(-\frac{1}{2}\right)^{n}+\left(\frac{1}{2}\right)^{n}\right]$.
8.3. Find the values of $x \in \mathbb{R}$ for which the following series converge and compute their values:
a) $\sum_{n \geq 0}(3 x-4)^{n}$
b) $\sum_{n \geq 0}\left(\frac{x-1}{x+1}\right)^{n}$
c) $\sum_{n \geq 0} \frac{2^{n}}{(x+1)^{2 n}}$
d) $\sum_{n=0}^{\infty}\left(\frac{x-3}{2}\right)^{n}$
e) $\sum_{n=0}^{\infty}(1-|x|)^{n}$
f) $\sum_{n=1}^{\infty} \frac{8^{n}}{(x+1)^{3 n}}$
g) $\sum_{n=1}^{\infty} \frac{x^{2 n}}{2^{n-1}}$.

8.4. Book:

10.4: 5, 8.

