Análise Matemática III

LISTA 9

- (1) Prove que qualquer intervalo e qualquer conjunto $A \subset \mathbb{R}^n$ com m(A) = 0 são mensuráveis à Lebesgue.
- (2) (Conjunto não mensurável à Lebesgue) Para cada $\alpha \in \mathbb{R}$, considere o conjunto $A_{\alpha} = \alpha + \mathbb{Q}$.
 - (a) Determine $\bigcup_{\alpha \in \mathbb{R}} A_{\alpha}$ e $m(A_{\alpha})$.
 - (b) Mostre que $A_{\alpha} \cap A_{\beta} = \emptyset$ sse $A_{\alpha} \neq A_{\beta}$ sse $\alpha \beta \notin \mathbb{Q}$.
 - (c) *Considere o conjunto E constituído por um único elemento a_{α} de cada A_{α} distinto¹. Seja então $E_n = q_n + E$, $n \in \mathbb{N}$, onde q_n representa uma sucessão que ordena os racionais.
 - (i) Determine $\cup_n E_n$, $m((\cup_n E_n) \cap [0,1])$ e $m(E_n \cap [0,1]) m(E \cap [0,1])$.
 - (ii) Mostre que $E_i \cap E_j = \emptyset$, $i \neq j$. Sugestão: Suponha que existe $x \in E_i \cap E_j$.
 - (iii) Calcule $\sum_n m(E_n \cap [0,1])$ e compare com $m((\cup_n E_n) \cap [0,1])$. Conclua que $E \cap [0,1]$ não é mensurável à Lebesgue, i.e. $E \cap [0,1] \not\in \mathcal{M}$.
- (3) (Conjunto de Cantor) Considere $A_0 = [0,1]$. Divida-o em três partes iguais e retire o intervalo aberto do meio $I_1 =]\frac{1}{3},\frac{2}{3}[$. Obtemos assim $A_1 = I_0 \cup I_2$ onde $I_0 = [0,\frac{1}{3}]$ e $I_2 = [\frac{2}{3},1]$. Repita o processo para I_0 e I_1 , obtendo $A_2 = I_{00} \cup I_{02} \cup I_{20} \cup I_{22}$ onde $I_{00} = [0,\frac{1}{9}]$, etc. Continuando, temos uma sucessão de conjuntos A_n .
 - (a) Prove que $A = \bigcap_{n \in \mathbb{N}} A_n$ é não vazio.
 - (b) Prove que A tem medida de Lebesgue nula.
 - (c) *Prove que A não é numerável. Sugestão: Escreva $x \in [0,1]$ na base 3 na forma $x = (0.a_1a_2...)_3$ onde

$$x = \sum_{k \in \mathbb{N}} \frac{a_k}{3^k}$$

e $a_k \in \{0,1,2\}$. Note que $x \in A$ sse $a_k \in \{0,2\}$ para qualquer $k \in \mathbb{N}$.

(4) *Mostre que $\mathcal{M}(\mathbb{R})$ e $\mathcal{P}(\mathbb{R})$ têm a mesma cardinalidade. Sugestão: Use o facto de o conjunto de Cantor ter a mesma cardinalidade de \mathbb{R} e medida de Lebesgue nula.

¹Este conjunto existe pela aplicação do axioma da escolha.

- (5) Mostre que se $\mathcal{A}_1 \subset \mathcal{A}_2$, então $\sigma(\mathcal{A}_1) \subset \sigma(\mathcal{A}_2)$, e que $\sigma(\sigma(\mathcal{A})) = \sigma(\mathcal{A})$.
- (6) Mostre que $\mathcal{A} = \{[a, +\infty[: a \in \mathbb{R}\} \text{ gera a } \sigma\text{-\'algebra de Borel em } \mathbb{R}.$
- (7) Seja $\Omega = \{0,1\}^n \subset \mathbb{R}^n$, i.e. os elementos de Ω são vectores em \mathbb{R}^n com componentes 0 ou 1. Considere a medida $\mu \colon \mathcal{P}(\Omega) \to [0,+\infty]$ definida para cada $\omega = (\omega_1, \dots, \omega_n) \in \Omega$ por $\mu(\{\omega\}) = \frac{1}{2^n}$.

Dados $a_1, \ldots a_m \in \{0, 1\}$ com $1 \le m \le n$, definimos

$$A_{a_1,\ldots,a_m} = \{ \omega \in \Omega \colon \omega_i = a_i, i = 1,\ldots,m \}$$

e $\mathcal{A}_m = \{A_{a_1,\dots,a_m} : a_i \in \{0,1\}\}.$

- (a) Mostre que μ é uma medida de probabilidade.
- (b) Calcule $\mu(A_{a_1,\ldots,a_m})$.
- (c) Determine a σ -álgebra gerada por \mathcal{A}_2 .
- (d) *Mostre que o cardinal da σ -álgebra gerada por \mathcal{A}_m é 2^{2^m} .
- (8) * Dê um exemplo em \mathbb{R}^2 de um conjunto limitado de medida de Lebesgue nula cuja fronteira não tenha medida nula.