Mathematics I

Exercises

Mathematical Analysis

5 Real functions: domains, limits and continuity

5.1. Determine the domain of the following functions:
a) $\sqrt{x+1}$
b) $\ln (1-x)$
c) $\frac{1}{\sqrt{x^{2}-4}}$
d) $\sqrt{9-x^{2}}$
e) $\sqrt{e^{x^{2}}-1}$
f) $\ln \left(x^{2}-16\right)$
g) $\sqrt{|x-2|-4}$
h) $\ln (\ln x)$
i) $\frac{1}{\ln (\ln x)-1}$
j) $\frac{2}{\sqrt{2-|x-1|}}$
5.2. Compute, if they exist:
a) $\lim _{x \rightarrow 0} \sin \frac{1}{x}$
b) $\lim _{x \rightarrow 0}\left[x \sin \frac{1}{x}\right]$
c) $\lim _{x \rightarrow+\infty}\left[x \sin \frac{1}{x}\right]$
d) $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{x}$
5.3. Determine the following limits:
a) $\lim _{x \rightarrow \pm \infty} x^{2}-3 x+4$
b) $\lim _{x \rightarrow \pm \infty} \frac{x^{2}+x-1}{x-3 x^{2}+4}$
c) $\lim _{x \rightarrow \pm \infty} \frac{4 x^{3}-5 x+1}{2 x^{2}-3 x+5}$
d) $\lim _{x \rightarrow \pm \infty} \frac{x\left(x^{2}-1\right)}{x^{2}(2 x+3)}$
e) $\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}+6 x+9}$
f) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{3}-8}$
m) $\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-\sqrt{3 x-2}}{x-2}$
n) $\lim _{x \rightarrow 1} \frac{\sqrt{x-1}}{x-1}$
5.4. Consider the functions defined by:

$$
h(x)= \begin{cases}2 x+\arccos (x), & 0 \leq x<1 \\ 2, & x=1 \\ \frac{x+5}{3}, & 1<x \leq 4\end{cases}
$$

a) Show that h is continuous in all its domain.
b) Using Bolzano theorem, prove that: $\exists c \in] 2,4[: h(c)=c$.
5.5. Consider in $\mathbb{R} \backslash\{0\}$ the function $f(x)=\frac{1-e^{3 x}}{5 x}$. What is the value at $x=0$ so that the extension of f to \mathbb{R} is continuous.
5.6. Consider $f(x)=1-x \sin \left(\frac{1}{x}\right)$ on $\mathbb{R} \backslash\{0\}$. Let g be an extension of f to \mathbb{R}. Determine $g(0)$ so that g is continuous at $x=0$.
5.7. Determine a and b that make continuous the following functions at the given points.
a) $f_{1}(x)=\left\{\begin{array}{l}3 x-7, \quad x \geq 3 \\ a x+3, \quad x<3\end{array}, \quad x=3\right.$.
b) $f_{2}(x)=\left\{\begin{array}{ll}x+a, & x<-2 \\ 3 a x+b, & -2 \leq x \leq 1 \quad, \quad x=-2, x=1 \\ a x+3, & x>1\end{array}\right.$.
c) $f_{3}(x)=\left\{\begin{array}{ll}\sin (x), & x \leq 0 \\ a x+b, & x>0\end{array}, \quad x=0\right.$
5.8. Let f be a continuous function from $[a, b]$ to $[a, b]$. Show that there is $c \in[a, b]$ such that $f(c)=c$.
5.9. Prove that any polynomial with an odd degree has at least one root.

