Mathematics I

Exercises

Mathematical Analysis

5 Real functions: domains, limits and continuity

5.1. Determine the domain of the following functions:

a) $\sqrt{x+1}$ b) $\ln(1-x)$ c) $\frac{1}{\sqrt{x^2-4}}$ d) $\sqrt{9-x^2}$ e) $\sqrt{e^{x^2}-1}$ f) $\ln(x^2-16)$ g) $\sqrt{|x-2|-4}$ h) $\ln(\ln x)$ i) $\frac{1}{\ln(\ln x)-1}$ j) $\frac{2}{\sqrt{2-|x-1|}}$

5.2. Compute, if they exist: a) $\lim_{x \to 0} \sin \frac{1}{x}$ b) $\lim_{x \to 0} \left[x \sin \frac{1}{x} \right]$ c) $\lim_{x \to +\infty} \left[x \sin \frac{1}{x} \right]$ d) $\lim_{x \to 0} \frac{e^{x^2} - 1}{x}$

5.3. Determine the following limits: a) $\lim_{x \to \pm \infty} x^2 - 3x + 4$ b) $\lim_{x \to \pm \infty} \frac{x^2 + x - 1}{x - 3x^2 + 4}$ c) $\lim_{x \to \pm \infty} \frac{4x^3 - 5x + 1}{2x^2 - 3x + 5}$ d) $\lim_{x \to \pm \infty} \frac{x(x^2 - 1)}{x^2(2x + 3)}$ e) $\lim_{x \to -3} \frac{x^2 + 3x}{x^2 + 6x + 9}$

f)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 8}$$

m) $\lim_{x \to 2} \frac{\sqrt{x + 2} - \sqrt{3x - 2}}{x - 2}$
n) $\lim_{x \to 1} \frac{\sqrt{x - 1}}{x - 1}$

5.4. Consider the functions defined by:

$$h(x) = \begin{cases} 2x + \arccos(x), & 0 \le x < 1\\ 2, & x = 1\\ \frac{x+5}{3}, & 1 < x \le 4 \end{cases}$$

a) Show that h is continuous in all its domain.

b) Using Bolzano theorem, prove that: $\exists c \in]2, 4[: h(c) = c.$

5.5. Consider in $\mathbb{R} \setminus \{0\}$ the function $f(x) = \frac{1 - e^{3x}}{5x}$. What is the value at x = 0 so that the extension of f to \mathbb{R} is continuous.

5.6. Consider $f(x) = 1 - x \sin\left(\frac{1}{x}\right)$ on $\mathbb{R} \setminus \{0\}$. Let g be an extension of f to \mathbb{R} . Determine g(0) so that g is continuous at x = 0.

5.7. Determine a and b that make continuous the following functions at the given points.

a)
$$f_1(x) = \begin{cases} 3x - 1, & x \ge 3 \\ ax + 3, & x < 3 \end{cases}$$
, $x = 3$.
b) $f_2(x) = \begin{cases} x + a, & x < -2 \\ 3ax + b, & -2 \le x \le 1 \\ ax + 3, & x > 1 \end{cases}$, $x = -2, x = 1$.
c) $f_3(x) = \begin{cases} \sin(x), & x \le 0 \\ ax + b, & x > 0 \end{cases}$, $x = 0$

5.8. Let f be a continuous function from [a, b] to [a, b]. Show that there is $c \in [a, b]$ such that f(c) = c.

5.9. Prove that any polynomial with an odd degree has at least one root.