MATHEMATICS I

2012-13 Test (2)

1. Let D be the domain of $f(x)=f(x)=\frac{2}{\sqrt{2-|x-1|}}$ and C the set of the terms of the sequence $u_{n}=12 \ln \left(e+n \sin \left(\frac{1}{n}\right)\right)$.
(a) Determine the domain of f and represent on the real line the set $A=C \cup D$.
(b) Find the boundary and the set of accumulation points of A.
(c) Decide if A is open or closed.
2. Study the convergence of the sequences, computing its limit if it exists
(a) $u_{n}=\left(\frac{2 n+5}{7 n+10}\right)^{n}$
(b) $u_{n}=\frac{2 n}{\sqrt{7 n^{2}+1}}+\frac{2 n}{\sqrt{7 n^{2}+2}}+\frac{2 n}{\sqrt{7 n^{2}+3}}+\cdots+\frac{2 n}{\sqrt{7 n^{2}+n+1}}$
(c) $u_{n}=(-1)^{n} n\left(e^{1 / n}-1\right)$
3. Determine for which values of x the follosing series converge and compute its sum
(a) $\sum_{n=0}^{+\infty}(2 x-5)^{n}$
(b) $\sum_{n=0}^{+\infty}(4|x-2|-7)^{n}$
(c) $\sum_{n=0}^{+\infty}(9-|2 x|)^{n}$
4. What is the convergence interval of the following power series?
(a) $\sum_{n=0}^{+\infty} \frac{n!}{(n+1)^{n}} x^{n}$
(b) $\sum_{n=0}^{+\infty} \frac{(1-|4 x|)^{n}}{(n!)^{n}} x^{n}$
(c) $\sum_{n=0}^{+\infty}(\ln n)(|4 x|-3)^{n}$
5.

(a) Determine the fraction represented by $1.2(02)$.
(b) Find the set of the solutions of $-6 x<x^{2}+9 \leq 10 x$
(c) Prove that any series with positive terms whose partial sums are bounded is convergent.

