MATHEMATICS I

2012-13 Test (3)

1. Determine the domain D of the following functions

(a)
$$f(x) = \frac{\sqrt{x^2 - 9}}{\ln x + 10}$$

(b)
$$f(x) = \frac{\sqrt{|x| - 9}}{e^{x+10} - 1}$$

(c)
$$f(x) = \frac{\ln(1 - \sin^2 x)}{|\cos x| - 1}$$
.

2. Study the existence of limit of the following functions at the respective points

(a)
$$f(x) = \sin^3\left(\frac{2x+5}{7x+10}\right)$$
. $\arctan(3x^2+4x)$ at 0

(b)
$$f(x) = \frac{x^4 \sqrt{\sin^2(x+1)}}{\sqrt{x^4 + x^2}}$$
 at 0

(c)
$$f(x) = \frac{x \sin(x-1)}{(x-1)^2}$$

3. Study the domain of definition and of continuity os the following functions

(a)
$$f(x) = \frac{x}{\sqrt{1 - \cos x}}$$
 is $x \neq 0$ and 0 at 0

(b)
$$f(x) = \ln 1 + |x|$$

(c)
$$f(x) = \frac{|x^2 + 2x - 3|}{x + 2}$$

- 4. Show that:
 - (a) any polynomial with an odd degree has at least one zero
 - (b) $x^8 + 3x^4 1$ has at least two real different roots
- **5**.
- (a) Let $f(x) = \ln |x 2|$ if $x \le 0$ and $f(x) = x^2 + mx + p$ if x > 0. Determine m and p such that f is continuous at every point.
- (b) Let f and g be continuous functions such that

$$f(0) = 0$$
, $g(0) > 0$, $\lim_{x \to +\infty} f(x) > \lim_{x \to +\infty} g(x)$.

Show that there is x > 0 such that f(x) = g(x).