MATHEMATICS I

2012-13 Test (3)

1. Determine the domain D of the following functions
(a) $f(x)=\frac{\sqrt{x^{2}-9}}{\ln x+10}$
(b) $f(x)=\frac{\sqrt{|x|-9}}{e^{x+10}-1}$
(c) $f(x)=\frac{\ln \left(1-\sin ^{2} x\right)}{|\cos x|-1}$.
2. Study the existence of limit of the following functions at the respective points
(a) $f(x)=\sin ^{3}\left(\frac{2 x+5}{7 x+10}\right) \cdot \arctan \left(3 x^{2}+4 x\right)$ at 0
(b) $f(x)=\frac{x^{4} \sqrt{\sin ^{2}(x+1)}}{\sqrt{x^{4}+x^{2}}}$ at 0
(c) $f(x)=\frac{x \sin (x-1)}{(x-1)^{2}}$
3. Study the domain of definition and of continuity os the following functions
(a) $f(x)=\frac{x}{\sqrt{1-\cos x}}$ is $x \neq 0$ and 0 at 0
(b) $f(x)=\ln 1+|x|$
(c) $f(x)=\frac{\left|x^{2}+2 x-3\right|}{x+2}$
4. Show that:
(a) any polynomial with an odd degree has at least one zero
(b) $x^{8}+3 x^{4}-1$ has at least two real different roots
5.

(a) Let $f(x)=\ln |x-2|$ if $x \leq 0$ and $f(x)=x^{2}+m x+p$ if $x>0$.

Determine m and p such that f is continuous at every point.
(b) Let f and g be continuous functions such that

$$
f(0)=0, \quad g(0)>0, \quad \lim _{x \rightarrow+\infty} f(x)>\lim _{x \rightarrow+\infty} g(x)
$$

Show that there is $x>0$ such that $f(x)=g(x)$.

