MATHEMATICS I

2012-13 Test (1)

- 1. Consider the matrix $C=\begin{bmatrix}5&-2&-4\\-2&2&b\\3&-6&-6\end{bmatrix}$, with $b\in\mathbb{R}$ and $B=\frac{1}{6}\begin{bmatrix}2&2&0\\0&-3&-2\\1&4&1\end{bmatrix}$. Determine $b\in\mathbb{R}$ so that
 - **a)** B is the inverse of C.
 - **b)** $\det [C(B+I)] = 8.$
- **2**. If $A = \begin{bmatrix} 4 & 1 & 0 \\ 0 & a & 1 \\ -2 & 5 & 2 \end{bmatrix}$ find $a \in \mathbb{R}$ such that A is invertible.
- 3. Consider $A = \begin{bmatrix} 0 & 4 & -4 \\ -6 & -2 & -1 \\ 0 & 10 & -3 \end{bmatrix}, B = \begin{bmatrix} 2/21 & -1/6 & -1/14 \\ -3/28 & \beta & 1/7 \\ -5/14 & 0 & 1/7 \end{bmatrix}, (\beta \in \mathbb{R}), e$ $C = \begin{bmatrix} 21 & 0 & 0 \\ 0 & 28 & 0 \\ 0 & 0 & 14 \end{bmatrix}.$ Knowing that A and B and inverses,
 - a) determine β .
 - b) find the matrix X that satisfies $AXC^{-1} = A + I$ (in case you have not solved a) take $\beta = 0$).
- 4. Determine $a \in \mathbb{R}$ such that $\begin{bmatrix} 2 & 3 \\ -1 & 0 \\ 5 & 4 \end{bmatrix} \times \begin{bmatrix} 0 & 2 \\ 6 & a \\ 2 & 0 \\ 1 & -2 \end{bmatrix}^T = \begin{bmatrix} 6 & 24 & 4 & -4 \\ 0 & -6 & -2 & -1 \\ 8 & 46 & 10 & -3 \end{bmatrix}$.
- 5. Discuss for each parameter the solutions of the following systems:

a)
$$\begin{cases} x + 4y + 3z = 10 \\ 2x - 7y - 2z = 10 \\ x + 5y + \alpha z = \beta \end{cases}$$

b)
$$\begin{cases} x + 2y + 3z + 4t = 2\\ \alpha y + 3t = 1\\ 5y + z - t = 2 \end{cases}$$