MATHEMATICS I

2012-13 Test (1)

1. Consider the matrix $C=\left[\begin{array}{ccc}5 & -2 & -4 \\ -2 & 2 & b \\ 3 & -6 & -6\end{array}\right]$, with $b \in \mathbb{R}$ and $B=\frac{1}{6}\left[\begin{array}{ccc}2 & 2 & 0 \\ 0 & -3 & -2 \\ 1 & 4 & 1\end{array}\right]$. Determine $b \in \mathbb{R}$ so that
a) B is the inverse of C.
b) $\operatorname{det}[C(B+I)]=8$.
2. If $A=\left[\begin{array}{ccc}4 & 1 & 0 \\ 0 & a & 1 \\ -2 & 5 & 2\end{array}\right]$ find $a \in \mathbb{R}$ such that A is invertible.
3. Consider $A=\left[\begin{array}{ccc}0 & 4 & -4 \\ -6 & -2 & -1 \\ 0 & 10 & -3\end{array}\right], B=\left[\begin{array}{ccc}2 / 21 & -1 / 6 & -1 / 14 \\ -3 / 28 & \beta & 1 / 7 \\ -5 / 14 & 0 & 1 / 7\end{array}\right],(\beta \in \mathbb{R})$, e
$C=\left[\begin{array}{ccc}21 & 0 & 0 \\ 0 & 28 & 0 \\ 0 & 0 & 14\end{array}\right]$. Knowing that A and B and inverses,
a) determine β.
b) find the matrix X that satisfies $A X C^{-1}=A+I$ (in case you have not solved a) take $\beta=0$).
4. Determine $a \in \mathbb{R}$ such that $\left[\begin{array}{cc}2 & 3 \\ -1 & 0 \\ 5 & 4\end{array}\right] \times\left[\begin{array}{cc}0 & 2 \\ 6 & a \\ 2 & 0 \\ 1 & -2\end{array}\right]^{T}=\left[\begin{array}{cccc}6 & 24 & 4 & -4 \\ 0 & -6 & -2 & -1 \\ 8 & 46 & 10 & -3\end{array}\right]$.
5. Discuss for each parameter the solutions of the following systems:
a) $\left\{\begin{array}{c}x+4 y+3 z=10 \\ 2 x-7 y-2 z=10 \\ x+5 y+\alpha z=\beta\end{array}\right.$
b) $\left\{\begin{array}{c}x+2 y+3 z+4 t=2 \\ \alpha y+3 t=1 \\ 5 y+z-t=2\end{array}\right.$
