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Abstract

By exploiting basic common practice accounting and risk management rules, we pro-

pose a simple analytical dynamical model to investigate the effects of micro-prudential

changes on macro-prudential outcomes. Specifically, we study the consequence of the

introduction of a financial innovation that allow reducing the cost of portfolio diver-

sification in a financial system populated by financial institutions having capital re-

quirements in the form of VaR constraint and following standard mark-to-market and

risk management rules. We provide a full analytical quantification of the multivariate

feedback effects between investment prices and bank behavior induced by portfolio re-

balancing in presence of asset illiquidity and show how changes in the constraints of

the bank portfolio optimization endogenously drive the dynamics of the balance sheet

aggregate of financial institutions and, thereby, the availability of bank liquidity to the

economic system and systemic risk. The model shows that when financial innovation

reduces the cost of diversification below a given threshold, the strength (due to higher

leverage) and coordination (due to similarity of bank portfolios) of feedback effects

increase, triggering a transition from a stationary dynamics of price returns to a non

stationary one characterized by steep growths (bubbles) and plunges (bursts) of market

prices.
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1 Introduction

In most standard economic models, financial institutions are viewed as passive players and

credit does not have any macroeconomic effect. Yet, a growing body of empirical literature

consistently finds that an acceleration of credit growth is the single best predictor of future

financial instability (see Schularick and Taylor 2012, Gourinchas, Valdes and Landerretche

2001; Mendoza and Terrones 2008; Borio and Drehmann 2009). These empirical results

confirm that the balance sheet dynamics of financial intermediaries, far from being passive

and exogenous, is instead the “endogenous engine” that drives the boom-bust cycles of

funding and liquidity and hence the dynamics of systemic risk. As stated by Adrian and

Shin (2010): “balance sheet aggregates such as total assets and leverage are the relevant

financial intermediary variables to incorporate into macroeconomic analysis”. In fact, a

change in the total assets of the financial institutions has important consequences in driving

the financial cycles through their influence on the availability of credit and funding of real

activities. In this way changes in the total asset and leverage of financial intermediaries play

a key role in determining the level of real activity. However, while the proximate cause for

crises is very often an expansion of the balance sheets of financial intermediaries, the reasons

for the acceleration of credit growth remain unclear.

In this paper we investigate the determinants of the balance sheet dynamics of financial

intermediaries by modeling the dynamic interaction between asset prices and bank behavior

induced by regulatory constraints. We find that standard capital requirements, in the form

of Value–at–Risk (VaR) constraints, together with the level of diversification costs (related

to the availability of derivatives products), determine bank decisions on diversification and

leverage which, in turns, strongly affect the dynamics of traded assets through the bank

strategies of portfolio rebalances in presence of a finite asset liquidity. We can then show

how changes in the constraints of the bank portfolio optimization (such as changes in the

prevailing cost of diversification or changes in the micro-prudential policies) endogenously

drive the dynamics of systemic risk and the availability of bank liquidity to the economic

system.

Therefore, our model provides a simple analytical framework that can be used to in-
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vestigate questions such as: (i) what is the effect of financial innovations allowing a more

efficient diversification of risk? (ii) what are the systemic risk consequences of a change in

capital requirements and in the maximum leverage allowed to banks? (iii) How does conta-

gion propagates when financial players change their level of diversification? (iv) Is it always

beneficial for the system to have more diversified portfolios? (v) Can actions to reduce risk

of a single financial institution increase the risk of a systemic event i.e. are micro-prudential

policies always coherent with macro-prudential objectives?

In building our model we try to keep behavioral assumptions at minimum, exploiting

instead the implications of “objective” constraints imposed by regulatory institutions and

standard market practice. We then start from a simple portfolio optimization problem in

presence of cost of diversification and VaR constraint1 showing how a reduction in the costs

of diversification (due, for instance, to financial innovations such as securization) leads to

an increase in both leverage and diversification and how a positive relation naturally exists

between these two latter variables: an increase in diversification, by reducing the portfolio

volatility, relaxes the VaR constraint allowing to increase the bank leverage.

So a first important result is that financial innovation which, by increasing the optimal

level of diversification, reduces idiosyncratic risks, actually increases the exposure to un-

diversifiable macro risks by increasing the optimal leverage of a VaR constrained investor.

Moreover, a higher level of diversification, by increasing the overlap among bank portfolios,

increases the correlation among them. Thus, the combined increase in risk exposure and

correlation of financial institutions will expose the economy to higher level of systemic risk.

We then link these results with the literature on the portfolio rebalancing induced by

the mark-to-market accounting rules and VaR constraint (see for instance Adrian and Shin

2009). In this balance sheet models an increase in the value of the assets, increases the

amount of equity leading to surplus of capital with respect to the VaR requirements which is

adjusted by expanding the asset side through borrowing i.e. by raising new debt (typically

done with repos contracts). Hence, VaR capital requirements, induce a perverse demand

function: financial institution will buy more assets if their price rises and (with an analogous

1Note that VaR type of constraints arise from the capital requirements contained in Basel I and II bank

regulations but also from margin on collateralized borrowing imposed by creditors (see Brunnermeier and

Pedersen 2008), rating agencies, and internal risk management models.
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mechanism but with reversed sign) sell more assets when their price falls. Therefore, a

VaR constrained financial institution will have positive feedback effect on the prices of the

assets in his portfolio.2 The intensity and coordination (among financial institutions) of

these portfolio rebalancing feedbacks will depend, respectively, on the degree of leverage and

diversification.

By analyzing the endogenous asset price dynamics determined by the impact of supply

and demand generated by the financial institutions rebalancing their portfolio, we derive

closed–form expression for the endogenous component of the variance and covariance of

asset price and bank portfolios. We can then show that a larger leverage increases both the

variances and the covariances of stock returns while a greater degree of diversification reduces

the variances but increases the covariances. Both are positively related with correlations.

Through these explicit formula linking portfolio choices and the statistical properties of

asset price dynamics, we can investigate the impact of changes in bank costs and constraints

(micro–prudential policy) on systemic risk and on the dynamics of the banking sector total

asset (macro–prudential objectives).

Our paper tries to combine several strands of literature: (i) the one on the impact of

the imposition of capital requirements on the behavior of financial institutions and their

possible procyclical effects (Danıelsson et al., 2004; Danielsson et al., 2009; Adrian and

Shin, 2009; Adrian et al., 2011; Adrian and Boyarchenko, 2012; Tasca and Battiston, 2012);

(ii) the literature on the effects of diversification and overlapping portfolios on systemic

risk (Tasca and Battiston, 2011; Caccioli et al., 2012); (iii) the literature on the risks of

financial innovation (Brock et al., 2009; Caccioli et al., 2009; Haldane and May, 2011);

(iv) the literature on distressed selling and its impact on the market price dynamics (Kyle

and Xiong, 2001; Wagner, 2011; Cont and Wagalath, 2011; Thurner et al., 2012; Cont and

Wagalath, 2012; Caccioli et al., 2012); (v) the literature on the determinants of the dynamics

of balance sheet aggregates and credit supply of financial institutions (Stein 1998, Bernanke

and Gertler 1989, Bernanke, Gertler and Gilchrist 1996, 1999 and Kiyotaki and Moore 1997).

Our contribution is to propose a simple model that, by combining these different streams

2This type of active balance sheet management is particularly utilized by investment banks, ABS issuers,

security broker-dealers, i.e. by the so called market-based financial intermediaries or shadow banking system.
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of literature, provides a fully analytical quantification of the links between micro prudential

rules and macro prudential outcomes in a multivariate context which considers both the

presence of endogenous feedback caused by portfolio rebalancing and the impact of financial

innovations on the cost of diversification.

The paper is organized as follows. Section 2 presents the model set up and the analytical

results by first describing the portfolio decision problem of financial institutions facing VaR

constraints and diversification costs and then analyzing its macroeconomic consequences in

the dynamic case which considers the impact of investor demands on the asset dynamics.

Section 3 analyzes the systemic risk implications of our model both a static setting with-

out feedback and in a dynamic setting with the endogenous feedback generated by portfolio

rebalancing. Based on those analytical results, Section 4 discusses the macro-prudential con-

sequences of the introduction of financial innovations reducing diversification costs. Section

5 summarizes and concludes.

2 The model

2.1 Portfolio decisions

We begin by considering a financial institution endowed with a given amount of initial eq-

uity capital E and we model its portfolio selection across a collection of risky investments

i = 1, ...,M . In general, these might be individual investments or asset classes. Finan-

cial institutions, correctly perceive that each risky investment entails both an idiosyncratic

(diversifiable) risk component and a systematic (undiversifiable) risk component, i.e. the

perceived variance of the investment risky asset i, σ2
i , can be decomposed as σ2

i = σ2
s + σ2

d

where σ2
s is the systematic risk and σ2

d is the diversifiable risk component. Hence, the ex-

pected mean and volatility per dollar invested in the portfolio chosen by a given institution

are µ and σp =

√
σ2
s +

σ2
d

m
, respectively. For simplicity, we assume that financial institutions

adopt a simple investment strategy consisting in forming an equally weighted portfolio com-

posed of m randomly selected risky investments from the whole collection of M available

investment assets.

Because of the presence of transaction costs, firms specialization and other type of fric-
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tions, we assume the existence of “costs of diversification” which, in general, can prevent

each institution to achieve full diversification of its portfolio (precisely the existence of these

costs in real markets spurred the developments of financial innovation products as we will

discuss in the next sections).

Let rL be the per dollar average interest expense on the liability side, then the Net

Interest Margin (NIM) of the financial institution is µ− rL. The NIM is therefore a measure

of the overall profitability of a financial institution.

We then assume that financial institutions seek to maximize returns from the risky in-

vestments under their Value at Risk (VaR) constraints. The VaR is some multiple of the

standard deviation of the portfolio of assets A. With σp the holding period volatility per dol-

lar of asset A and α a scaling constant, the VaR constraint faced by the financial institution

is

V aR = ασpA ≤ E. (1)

As empirically shown by Adrian and Shin (2009) financial institutions adjust their asset

side rather than raising or redistributing equity capital. In agreement with these empirical

observations, we will consider the equity capital of the financial institutions to be fixed.

Summarizing, given their NIM and level of equity E, financial institutions, facing cost of

diversification and VaR constraints, choose the level of total asset A and degree of diversifi-

cation m which maximize their returns from the risky investments. That is, assuming cost

of diversification proportional to m, financial institutions maximize

max
A,m

A(µ− rL)− c̃m s.t. αA

√
σ2
s +

σ2
d

m
≤ E. (2)

where c̃ is the cost for investment (assumed to be the same across all investments). Dividing

by E and defining c = c̃/E, we can express the maximization problem in terms of the leverage

λ = A
E

,

max
λ,m

λ(µ− rL)− cm s.t. αλ

√
σ2
s +

σ2
d

m
≤ 1. (3)

Hence, each institution chooses the optimal leverage λ∗ = A∗/E and the optimal number of

investments m∗ which maximizes its Return On Equity (ROE) under its VaR constraints.
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It is convenient to transform the constraint by squaring both sides so that the Lagrangian

can be written as

L = λ(µ− rL)− cm− 1

2
γ

(
α2λ2

(
σ2
s +

σ2
d

m

)
− 1

)
. (4)

where γ is the Lagrange multiplier for the VaR constraint. The first order condition for λ is

(µ− rL)− γα2σ2
pλ = 0 ⇒ λ =

1

γ

1

α2

µ− rL(
σ2
s +

σ2
d

m

) (5)

Substituting in the constraint we obtain the Lagrange multiplier or shadow price of the VaR

constraint γ

γ =
1

α

µ− rL√
σ2
s +

σ2
d

m

=
1

α

µ− rL
σp

(6)

which is proportional to the Sharpe ratio. The optimal number of investments m∗ is then,

m∗ =

√
γαλσd√

2c
= λσd

√
α

2c

µ− rL
σp

(7)

which shows that, as expected, the level of diversification chosen is inversely related to the

cost of diversification c. For the leverage we have,

λ∗ =
1

α

√
σ2
s +

σ2
d

m

=
1

ασp
(8)

thus, the optimal leverage is inversely related to the volatility of the asset portfolio. In the

following, we will drop the star symbol on the optimal values for notational convenience, i.e.

we will denote the target leverage λ∗ and diversification m∗ simply as λ and m, respectively.

Assuming that all financial institutions have the same perceived volatility and face the

same cost of diversification c, the portfolio decision becomes the same for all institutions so

that the degree of diversification m and leverage λ will be the same across banks.

Figure 1 reports the numerical solutions for the optimal leverage as a function of different

levels of diversification costs (and for a given choice of the set of the remaining parameters

in the model). Each line corresponds to different levels of systematic to idiosyncratic noise

ratio (σs/σd = {0, 0.3, 0.6}). A reduction of diversification costs, by increasing the level

of diversification and hence relaxing the VaR constraint, allows the financial institution to
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Figure 1: Relation between the optimal leverage λ and the diversification cost c, obtained

by solving numerically Eq.s (7) and (8). The used parameters are: M = 20, α = 0.05,

µ − rL = 0.8, σd = 1. We then choose σs equal to 0 (solid line), 0.3 (dashed line), and 0.6

(dotted line).

increase the optimal leverage, especially for lower level of the systematic to idiosyncratic

noise ratio. Note that below a given cost the optimal leverage becomes constant due to the

saturation of diversification reached when the portfolio becomes perfectly diversified across

all the M available investments. The sensitivity of the optimal leverage to diversification

costs is higher for lower systematic to idiosyncratic noise ratios.

2.2 Overlapping portfolios

We now assume that our economy is composed by a group of N financial institutions labeled

with j = 1, ..., N and investing in the M risky investments as described above. The portfolio

holdings of the N banks can be represented by using a bipartite graph, where the first set of

nodes is composed by the N banks and the second set of nodes is composed by the M risky

investments. Each bank j invests in mj investments and this fact can be represented by mj

links connecting node j with its mj investments.

In the following of the paper we will make the simplifying assumption of homogeneity

across banks, i.e. a sort of “representative bank” hypothesis. This assumption allows us
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to solve analytically the model. As said above, homogeneity means that all the banks have

the same equity E and thus each bank solves the same optimization problem and invests in

the same number m of risky investments. However we will assume that each bank chooses

randomly and independently the m investments across the set of the M available ones and

thus the portfolios are different for different banks. A realization of portfolio choice of all

the banks lead to a specific instance of the bipartite graph.

The number of banks n having a specific risky investment in their portfolio is a random

variable described by the binomial distribution

P (n;N,M,m) =

(
N

n

)(m
M

)n (
1− m

M

)N−n
(9)

whose mean value is clearly E[n] = mN/M .

Taken two banks, we can define the overlap o of their portfolios as the number of risky

investments in common in the two portfolios. Also o is a random variable and it is distributed

as an hypergeometric distribution

P (o;M,m) =

(
m
o

)(
M−m
m−o

)(
M
m

) 0 ≤ o ≤ m. (10)

Its mean value is E[o] = m2/M and its variance is V [o] = m(M −m)2/(M2 −M). Finally,

the fractional overlap of two portfolios of = o/m is a number between 0 and 1 describing

which fraction of the portfolio is in common between the two banks. Clearly, the mean

fractional overlap is ō ≡ E[of ] = m/M , therefore the value of the portfolio size m is also a

measure of the average fractional overlap ō between portfolios and viceversa.

The left panel of Figure 2 shows the numerical solutions of the fractional overlap, coming

from the optimal portfolio decision, as a function of different levels of diversification costs

(again, each line corresponds to different levels of systematic to idiosyncratic noise ratio,

σs/σd = {0, 0.3, 0.6}). The figure shows how reducing the costs of diversification, by the

introduction of some new form of financial products for example, increases the degree of

overlap and hence correlation, between the portfolio of financial institutions.

The fractional overlap resulting from the portfolio choices of financial institutions, can

also be represented as a function of the tightness of the imposed capital requirements. This

relation, depicted in the right panel of Figure 2, implies that regulator could tune the required
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Figure 2: The left panel shows the mean fractional overlap ō between two portfolios versus

the diversification cost c and the right panel shows ō versus the α parameter of the VaR

constraint. The used parameters are: M = 20, µ − rL = 0.8, σd = 1. We then choose σs

equal to 0 (solid line), 0.3 (dashed line), and 0.6 (dotted line). Moreover in the left panel we

set α = 0.05 and in the right panel we set c = 2.5.

capital ratio α so to reach a given level of overlap, and hence correlation, among financial

institutions.

2.3 Asset demand from portfolio rebalancing

Having identified their optimal leverage, financial institution periodically rebalance their

portfolios in order to maintain the desired target leverage. The rebalancing of the portfolio

of individual bank j at time t, is given by the difference between the desired amount of asset

A∗j,t = λEj,t and the actual one Aj,t,
3 i.e. ∆Rj,t ≡ A∗j,t−Aj,t. By defining the realized return

portfolio rpj,t, ∆Rj,t can be written as (see Appendix A)

∆Rj,t = (λ− 1)rpj,tA
∗
j,t−1, (11)

that is, any profit or loss from investments in the chosen portfolio (rpj,tA
∗
j,t−1) will directly

result in a change in the asset value amplified by the current degree of leverage (being

3As clearly shown by Adrian and Shin (2009), the balance sheet adjustments are typically performed by

expanding or contracting the asset side rather than the level of equity.
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λ > 1). Hence, a VaR constrained financial institution will have a positive feedback effect

on the prices of the assets in his portfolio.

The total demand of the risky investment i at time t will be simply the sum of the

individual demand of the financial institutions who picked investment i in their portfolio,

Di,t =
N∑
j=1

I{i∈j}
1

m
∆Rj,t =

N∑
j=1

I{i∈j}(λ− 1)rpj,t
A∗j,t−1

m
(12)

where I{i∈j} is the indicator function which takes value one when investment i is in the

portfolio of institution j and zero otherwise.

By considering total assets approximately the same across financial institutions, A∗j,t−1 '

A∗t−1, the demand of the investment i can be approximately rewritten in terms of individual

investments returns ri,t as (see Appendix B.1):

Di,t ≈ (λ− 1)
A∗t−1

m

N

M

(
ri,t +

m− 1

M − 1

∑
k 6=i

rk,t

)
(13)

From Equation (13) we can notice that, in the hypothetical case in which all investment

returns are approximately the same, the demand of an investment i does not depends on

the degree of diversification m. This is due to a compensation happening between two

opposite effects: on one hand, increasing the diversification of the investor increases the

average number of investors (Nm
M

) holding the investment i in their portfolio, increasing the

expected demand of investment i; on the other hand, it reduces the share of the total asset

rebalancing (
A∗t−1

m
) borne by the investment i, thus reducing the impact on the demand of i.

These two effects turn out to exactly offset each other on expectation.

Although m does not affect the expected demand, it does heavily change the variance,

and most importantly, the correlation between the demand of two different investments. In

fact, by using (13), we can compute the variance of the demand, V ar[Di], and the demand

correlation between two investment assets, ρ(Di, Dj) (see Appendix B.2). Figure 3 shows

the variance and correlation of demand as a function of the mean fractional overlap between

portfolios (again for different levels of systematic to idiosyncratic noise ratios). While the

variance of the demand of a given asset decreases with the portfolio overlap, cross correlation

quickly increases with the portfolio overlap and tends to one as the portfolio becomes per-

fectly diversified. In fact, as shown in the appendix, ρ(Di, Dj) →
m→M

1 . Clearly, correlations

are in general stronger for higher level of volatility coming from the systematic component.
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Figure 3: Variance (left) and cross correlation (right) of demand as a function of the mean

fractional overlap ō between portfolios. The parameters are M = 20, N = 100, and σd = 1.

We then choose σs equal to 0 (solid line), 0.3 (dashed line), and 0.6 (dotted line).

2.4 Risky asset dynamics with endogenous feedbacks

In this section we study the dynamics of the model in the case where the return of the

risky investments are endogenously influenced by the former period demands coming from

the portfolio rebalancing of financial institutions. In presence of rebalancing feedbacks, the

return process will now be made of two components:

ri,t = ei,t−1 + εi,t (14)

the exogenous component εi,t coming from the external shocks and the endogenous compo-

nent ei,t−1 coming from the previous period portfolio rebalancing of the financial institutions.

We assume that the exogenous component has a multivariate factor structure

εi,t = ft + εi,t, (15)

with the factor ft and the idiosyncratic noise εi,t uncorrelated and distributed with mean

zero and constant volatility, respectively σf and σε (the same for all investments). Thus, the

variance of the exogenous component of the risky investment i is V (εi) = σ2
f + σ2

ε .

Assuming, for simplicity, a linear price impact function, the endogenous component of
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the return of investment i at time t+ 1 becomes4

ei,t =
Di,t

γiCi,t
(16)

where Ci,t =
∑N

j=1 I{i∈j}
A∗j,t−1

m
is a proxy for market capitalization of investment i, and γi

is a parameter expressing the market liquidity of the investment i. Again, assuming that

A∗j,t−1 ' A∗t−1, the market capitalization of investment i is

Ci,t =
N∑
j=1

I{i∈j}
A∗j,t−1

m
≈
A∗t−1

m

N∑
j=1

I{i∈j} =
N

M
A∗t−1 (17)

because on average there are Nm/M banks having investment i in their portfolio.

Substituting Equations (13), (14), and (17) in (16) and using matrix notation we ob-

tain the following Vector Autoregressive (VAR) dynamics of the vector of the endogenous

components

et = Φ rt = Φ (et−1 + εt) (18)

where Φ ≡ (λ− 1) Γ−1 Ψ with

Γ
M×M

=


γ1 0 . . . 0

0 γ2 . . . 0
...

. . .
...

0 0 . . . γM

 , Ψ
M×M

=


1
m

1
m
m−1
M−1

. . . 1
m
m−1
M−1

1
m
m−1
M−1

1
m

. . . 1
m
m−1
M−1

...
. . .

...

1
m
m−1
M−1

1
m
m−1
M−1

. . . 1
m

 .

Thus the endogenously determined component of returns follows a VAR process of order

one. The dynamics of such VAR(1) process is dictated by the eigenvalues of the matrix

Φ = (λ − 1)Γ−1Ψ. In particular, since the maximum eigenvalue of the matrix Ψ is always

equal to 1 (see Appendix C), the maximum eigenvalue of the VAR(1) process becomes

Λmax ≈ (λ− 1) γ−1 (19)

where γ−1 is the average of all the γ−1
i . Hence, the maximum eigenvalue depends on the

degree of leverage and on the average illiquidity of the investments.

4A stochastic component coming from the exogenous demands of traders not actively rebalancing their

portfolio could be added at the cost of complicating the subsequent computations.

12



When the maximum eigenvalue is greater than one, the return processes become non-

stationary and explosively accelerating. It is important to remark that even a reduction

in the liquidity of only one risky investment (by changing the average illiquidity of the

investments) impacts the dynamics of all the traded investments and can potentially drive

the whole financial system towards instability. In fact, depending on the average of the 1
γi

,

the maximum eigenvalue (and thus the dynamical properties of the whole system) will be

highly sensitive to illiquid investments, i.e. to investment having a small γ. For the sake of

simplicity and analytical tractability, in the rest of the paper we will consider only the case

in which all investments have the same liquidity, i.e. γi = γ, ∀i.
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Figure 4: The left panel shows the maximum eigenvalue Λmax as a function of the diversifi-

cation cost, while the right panel shows Λmax as a function of the mean fractional overlap ō

between two portfolios versus. The used parameters are: M = 20, α = 0.05, µ − rL = 0.8,

γ = 40, and σd = 1. We then choose σs equal to 0 (solid line), 0.3 (dashed line), and 0.6

(dotted line). The horizontal solid line shows the condition Λmax = 1, therefore the return

dynamics is stationary below this line and non stationary above it.

Figure 4 shows the maximum eigenvalue Λmax as a function of the diversification cost c

(left panel) and as a function of the mean portfolio overlap ō (right panel). We notice that

a reduction of the diversification cost tends to reinforce the feedback induced by portfolio

rebalancing which can lead to dynamic instability of the system (for Λmax > 1) when the

diversification costs decrease below a certain threshold (which is higher for smaller ratio of

systematic to idiosyncratic volatility). Analogously, we can analyze the dependence of the
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maximum eigenvalue of the dynamical system from the degree of portfolio overlap among

the financial institutions. A higher level of coordination in portfolio rebalancing, due to

similarities in the portfolio compositions, also reinforces the aggregate feedback between

market prices and balance sheet values pushing the system toward the region of instability

Λmax > 1. Note however, that the transition to a non stationary process is not achieved

when the portfolio overlap is equal to one, but, depending on the other parameters, also a

moderate value of the portfolio overlap can lead to market instability.

We now show that the homogeneity assumptions allow us to give an exact description of

the dynamics of investment returns and to compute in closed form the variance-covariance

matrix of returns. In fact, notice that mΨ can be written as

mΨ = (1− b)I + bιι′ (20)

with the scalar b = m−1
M−1

, identity matrix I, and the column vector of ones ι. Hence, the

VAR for the vector of endogenous components in equation (18) can be rewritten as

et = (1− b)A(et−1 + εt) + b MAι(ēt−1 + ε̄t) (21)

with matrix A ≡ λ−1
m

Γ−1 and scalars ēt ≡ 1
M

∑M
k=1 ek,t and ε̄t ≡ 1

M

∑M
k=1 εk,t. The scalar ēt

can be interpreted as the endogenous return of the market portfolio. Thus, the endogenous

component of an individual investment becomes

ei,t = (1− b) ai(ei,t−1 + εi,t) + b Mai(ēt−1 + ε̄t) (22)

with scalar ai = λ−1
mγi

.

Therefore, the process for ei,t can be rewritten as a linear combination of a standard

univariate AR(1) process and a dynamic process depending on the averages of previous period

endogenous components and shocks. In this way, ei,t is a mixture of a perfectly idiosyncratic

process (i.e. uncorrelated with the others investment processes) receiving weight 1 − b and

a perfectly correlated process with weight b. Being b = m−1
M−1

, the higher is the value of m,

the higher is the weight given to the perfectly correlated component of mixture and, hence,

the higher the correlations among the endogenous components of the different investments.

Moreover, assuming ai = a ∀i (i.e. all investments have the same liquidity), the process

for ēt becomes:

ēt = a(1− b+ bM)(ēt−1 + ε̄t) ≡ φ (ēt−1 + ε̄t) (23)
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with φ ≡ a(1 − b + bM). Therefore, the dynamics of the average process ēt is also an

autoregressive of order one; its variance, assuming stationarity of et, is (see Appendix D)

V (ēt) =
Λ2

max

1− Λ2
max

V (ε̄t) (24)

with V (ε̄t) =
(
σ2
f + σ2

ε

M

)
.

Finally, defining the distance of the endogenous component of investment i from the

average as ∆ei,t ≡ ei,t − ēt, we also have that

∆ei,t = (1− b) a(∆ei,t−1 + ∆εi,t) (25)

where ∆εi,t ≡ εi,t − ε̄t. So that the dynamics of the individual distance of the endogenous

component of investment i from the average value ēt is also an autoregressive process of

order one.

We can then interpret the dynamics of the endogenous components of each individual

investment as an idiosyncratic AR(1) process around a common process for the average value

also following an AR(1) and where the amplitude of the idiosyncratic component is inversely

related to the portfolio diversification. In other words, the dynamics of endogenous returns

can be described as a multivariate “ARs around AR”. When the process is stationary, the

mean market behavior is described by a mean reverting process. In turn, each investment

performs a mean reverting process around the market mean. It can be shown that the time

scale for mean reversion of the market is always larger than the time scale of reversion of

an investment toward the market mean behavior. Moreover, when m increases the time

scale of reversion of individual investment declines, which means that investments become

more quickly synchronized with the mean market behavior. Finally, notice that this type of

multivariate “ARs around AR” dynamics is also followed by the endogenous component of

portfolio returns ept ≡ 1
m

∑m
k=1 ek,t where the number of assets in portfolio is m < M .

Importantly, this representation clearly shows that, as for the exogenous component, also

the variability of the endogenous component of returns can be decomposed into a systematic

component associated with the volatility of ēt and an idiosyncratic one. Therefore, both the

exogenous and endogenous components contain a diversifiable and undiversifiable source of

risk, so that also the total risk of the investments return is composed of these two type of

risk, σs and σd, as perceived by the financial institutions.
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Thanks to this representation we are able to explicitly compute the variance and covari-

ances of the process for the endogenous components ei,t, which are reported in Appendix

(D). It can be shown that a larger leverage increases both the variances and the covariances

of ei,t, while a greater degree of diversification reduces the variances and increases the co-

variances. Both are positively related with correlations. In particular, it can be shown (see

Appendix D) that the correlations among the endogenous returns tend to one as m→M .5

Taking into account the feedback induced by the portfolio rebalancing introduces a new

endogenous component in the variance of the investment asset given by the variance of the

endogenous component

V (ri,t) = V (ei,t) + V (εi,t) (26)

where the exogenous variance V (εi,t) = σ2
f + σ2

ε and the explicit expression for the endoge-

nous variance V (ei,t) is given in Appendix D. This expression shows that the endogenous

component of return leads to an increase of the volatility of an investment above its “bare”

level V (εi,t). This volatility increase is at the end due to the finite liquidity of the invest-

ments and disappears when γ → ∞ and it can therefore be seen as an “illiquidity induced

contribution to volatility”.

Analogously, the covariance between the returns of two investments is enhanced by the

contribution coming from the covariance between the endogenous components (see Appendix

D)

Cov(ri,t, rj,t) = Cov(ei,t, ej,t) + σ2
f . (27)

Figure 5 shows the variance of returns and the correlation between the endogenous com-

ponent of returns of two investments as a function of diversification cost c. We see that

when cost is high, variance and correlations are low. By decreasing cost, variance of returns

increases as well as correlations. If the market factor is not strong enough, there is a value

of c for which variance diverges, corresponding to the case where the maximum eigenvalue

Λmax becomes equal to one. In this limit, correlations become closer and closer to one.

5Notice that the endogenous correlations would not tend to one in presence of an additional stochastic

component in the price impact function (Eq. 16) coming from the exogenous demand of traders not actively

rebalancing their portfolio (see Footnote 4).
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Figure 5: The left panel shows the variance of investment returns, V (ri,t), of Eq. (26) as

a function of the diversification cost c, while the right panel shows the correlation of the

endogenous component of returns between two investments, Corr(ei,t, ej,t) as a function of

c. The used parameters are: M = 20, α = 0.05, µ − rL = 0.8, γ = 40, and σd = 1. We

then choose σs equal to 0 (solid line), 0.3 (dashed line), and 0.6 (dotted line). The vertical

lines in the left panel indicate where the variance of returns diverges and below these values

correlations in the right panel are clearly not defined.

As a consequence the variance of portfolio returns in presence of the rebalancing feedbacks

becomes

V (rpt ) =
V (ei,t)

m
+
m− 1

m
Cov(ei,t, ej,t) + σ2

f +
σ2
ε

m

= V (ep) + σ2
f +

σ2
ε

m
, (28)

which, as for investment returns, means that the endogenous component (and therefore

the illiquidity of the assets) increases the volatility of portfolio by a illiquidity induced

contribution. The left panel of Figure 6 shows the variance of portfolios as a function of

diversification cost c for different values of the ratio σs/σd. It is important to notice that

by reducing diversification cost, the variance of portfolios initially declines. This means that

in this regime, financial innovation makes portfolios less risky and it is therefore beneficial.

However, the variance of the portfolio reaches a minimum for a given value of c and by

reducing further the diversification cost, one gets closer and closer to the critical condition

Λmax = 1 and the variance increases without bounds. In this regime, even small variations
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of the cost lead to huge increases of the riskiness of the portfolios.

It is also interesting to note that the variance of the observed market portfolio (the one

containing all the M investments with equal weights) is

V (rMt ) = V (ē) + σ2
f +

σ2
ε

M
≡ V (ē) + σ2

pM
=

Λ2
max

1− Λ2
max

σ2
pM

+ σ2
pM

=
1

1− Λ2
max

σ2
pM

(29)

with σ2
pM
≡ σ2

f + σ2
ε

M
being the market portfolio return when feedback due to impact is not

present, i.e. corresponds to the case of an infinitely liquid market. So, the factor 1
1−Λ2

max

representing the magnification of the exogenous variance due to the portfolio rebalancing,

can then be termed the “variance multiplier” of the endogenous component. Clearly, for

larger values of the maximum eigenvalue of the VAR process, the variance multiplier will

increase exploding for Λ2
max → 1.
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Figure 6: The left panel shows the variance of portfolios, V (rpt ), of Eq. (28) as a function

of the diversification cost c, while the right panel shows their correlation, ρep, of Eq. (31).

The used parameters are: M = 20, α = 0.05, µ − rL = 0.8, γ = 40, and σd = 1. We then

choose σs equal to 0 (solid line), 0.3 (dashed line), and 0.6 (dotted line). The vertical lines

in the right panel indicate where the variance of portfolios diverges and below these values

correlations in the right panel are clearly not defined.
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Similarly, the covariance between two portfolios containing m assets becomes

Cov(rph,t, r
p
k,t) = Cov(ei,t, ej,t) + σ2

f +m
m

M

(
V (ei,t)− Cov(ei,t, ej,t) + σ2

ε

m2

)
=

V (ei,t)

M
+
M − 1

M
Cov(ei,t, ej,t) + σ2

f +
σ2
ε

M

= V (ē) + σ2
f +

σ2
ε

M

=
1

1− Λ2
max

σ2
pM
. (30)

In fact, given the factor structure of ei,t, with the factor being r̄t = ēt−1 + ε̄t, the covariance

Cov(ep,t, ēt) is equal to the variance of the factor V (ē) (as for the exogenous covariance).

Finally, the correlation between two portfolios in presence of endogenous feedback can

be written as

ρp =
V (ē) + σ2

f + σ2
ε

M

V (ep) + σ2
f + σ2

ε

m

=

V (ep)
V (ē)
V (ep)

+
(
σ2
f + σ2

ε

m

)
σ2
f+

σ2ε
M

σ2
f+

σ2ε
m

V (ep) + σ2
f + σ2

ε

m

=
σ2
eρe + σ2

ερε
σ2
e + σ2

ε

(31)

where σ2
e ≡ V (ep), σ

2
ε ≡ σ2

f + σ2
ε

m
, ρe ≡ Cov(ep,t,ēt)

V (ep)
= V (ē)

V (ep)
, and ρε ≡

σ2
f+

σ2ε
M

σ2
f+

σ2ε
m

. That is,

the portfolio correlation in presence of active asset management is a weighted average of the

endogenous correlations between ep and ē, i.e. ρe, and the correlation between the exogenous

shocks, (i.e. ρε), with weights the respective variances σ2
e and σ2

ε . Since both the endogenous

ρe and exogenous ρε correlations tend to one as m → M , also the total correlation of the

portfolio ρp tends to one as m→M .

The right panel of Figure 6 shows the correlation between portfolios as a function of the

diversification cost c. Correlation between portfolios steadily increases by reducing diversi-

fication costs essentially because the overlap between portfolios increases. It is important

to notice that the condition of divergence of the variance does not imply a perfect overlap

between portfolio. For example, with the given parameters the transition to infinite variance

and non stationary portfolios occurs at ō = 0.34 when σs/σd = 0.3 and at ō = 0.21 when

σs/σd = 0. Thus correlation between portfolios can become very close to one even if the

portfolio overlap is relatively small.
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2.5 Bank asset dynamics

The dynamics of the rebalanced bank asset A∗i,t, can be written as

A∗j,t = λEj,t = λ
(
Ej,t−1 + rpj,tA

∗
j,t−1

)
= A∗j,t−1 + λrpj,tA

∗
j,t−1 (32)

thus, the relative change of the bank j total asset rAj,t is simply given as

rAj,t ≡
A∗j,t − A∗j,t−1

A∗j,t−1

= λrpj,t. (33)
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Figure 7: Variance of the total asset,
∑N

j=1 r
p
j,t, of the whole banking sector as a function of

the diversification cost c (left panel) and of the mean fractional overlap ō between portfolios

(right panel). The used parameters are: M = 20, α = 0.05, µ − rL = 0.8, γ = 40, σd = 1,

and N = 100. We then choose σs equal to 0 (solid line), 0.3 (dashed line), and 0.6 (dotted

line). The vertical lines indicate where the variance of total asset diverges.

Therefore, the variance and covariance of the relative change of bank assets rAj,t are simply

V (rAj,t) = λ2V (rpj,t) (34)

and

Cov(rAh,t, r
A
k,t) = λ2Cov(rph,t, r

p
k,t), (35)

where the expression for V (rpj,t) and Cov(rph,t, r
p
k,t) are given in equation (28) and (30), re-

spectively. The properties of the bank assets dynamics are then dictated by those of the
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portfolio (with its exogenous and endogenous components) and further amplified by the

degree of leverage.

We can finally compute the variance of the total asset of the whole banking sector

V

(
N∑
j=1

rAj,t

)
=NV

(
rAj,t
)

+N(N−1)Cov
(
rAh,t, r

A
k,t

)
= Nλ2V

(
rpj,t
)

+N(N− 1)λ2Cov
(
rph,t, r

p
k,t

)
=λ2V

(
N∑
j=1

rpj,t

)
(36)

where V
(∑N

j=1 r
p
j,t

)
is explicitly given in terms of the original variables in Appendix D where

it is also shown that for m→M it reduces to

V

(
N∑
j=1

rpj,t

)
−−−→
m→M

N2σ2
pM

1− Λmax

. (37)

These analytical results allows us to analyze the determinants of the variability of total

asset of the banking sector which governs the expansion and contraction of the supply of

credit and liquidity to financial system.

Figure 7 shows the variance of the total asset of the whole banking sectors as a function

of the diversification cost (left panel) and of the mean fractional overlap between portfolios

(right panel). We observe that the variance of the total asset monotonically increases when

one decreases diversification cost or increases the overlap between portfolios. As one of these

two related variables leads the system close to the critical point, the variance of the total

asset of the banking sector explodes. Moreover, close to the transition point, the variance of

the total asset increases dramatically when one changes slightly the typical overlap between

portfolios.

3 Systemic risk

We now analyze the systemic risk implications of our model first in the static setting without

feedback and then in a setting with the endogenous feedback of investor demands on the

asset dynamics.
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3.1 Static analysis

First, as previously shown, when the diversification m increases, the correlation between the

portfolio returns of two financial institutions will increase, with ρp −−−→
m→M

1, which, ceteris

paribus, tends to increase the probability of a systemwide contagion during a crisis event.

Second, given a negative realization of the systematic (exogenous and endogenous) com-

ponent st = ēt + ft, the portfolio return distribution conditioned on this systematic shock

sshockt is (considering, for simplicity, a normal distribution for portfolio returns with zero

mean):

rpi,t|sshockt ∼ N

(
sshockt ,

σ2
d

m

)
. (38)

where rpi,t =
∑m

j=1
ri,j,t
m

is the portfolio return of bank i at time t.

Consequently, the probability of default of a financial institution given a systematic shock

sshockt is

PDi,t−1 = P

([
rpi,t|sshockt

]
≤ −α

√
σ2
s +

σ2
d

m

)
(39)

= Φ

−α
√
σ2
s +

σ2
d

m
− sshockt√

σ2
d

m

 −−−−−−−−→
m→M, M→∞

1 ∀ sshockt < −ασs,

where Φ is the standard normal cdf. Therefore, for any negative shock of the systematic

component larger than its VaR, i.e. ασs, the probability of default increases with the degree

of diversification m.

Notice that a standard measure to evaluate the expected capital shortfall of the firm in

a crisis, the Marginal Expected Shortfall (MES) of Acharya et al. (2010) and Brownlees and

Engle (2012) does not depend on m. In fact, in our case the MES of institution i would be:

MESi,t−1(C) ≡ Et−1(rpi,t|st < C) =
Cov(rpi,t, st)

V ar(st)
Et−1(st|st < C) = Et−1(st|st < C)

being the portfolio beta equal to one in our simple model. Therefore, although the default

probability during a crisis event highly depends on the degree of diversification m, the

expected capital shortfall, as measured by the MES, does not account for the effect of

diversification, missing this dimension of systemic risk.
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Summarizing, higher degree of diversification increases both the probability of default

of single institutions (in case of large systematic shocks) and the correlations among them,

thus exposing the economy to a higher level of systemic risk.

3.2 Dynamic analysis

The results of the previous section show that the endogenous return dynamics adds an

additional component to both the variance and covariance of the risky investments. If such

endogenous components were not accounted for in the evaluation of portfolio volatility for

the VaR, obviously, there would be an underestimation of each agent’s risk, leading to an

under capitalization of the banking sector and, hence, to an higher fragility of the system.

Nevertheless, the practice of empirically estimating variances and covariances of risky assets

from past data, automatically considers both the exogenous and endogenous components of

volatility.

However, contrary to the case without endogeneity, the investments variances and co-

variances now depend on the level of diversification and, in particular, the degree of leverage

(through the dynamics of the endogenous component). Therefore, a change, say, in the de-

gree of leverage will cause a structural shift in the future level of variances and covariances

which will not be captured by the empirical estimation on past data.

In particular, in periods when leverage increases, portfolio volatility estimated on his-

torical past data will tend to underestimate future risk (coming from stronger rebalancing

feedback) leading to an increase of systemic risk. On the contrary, in periods of decreasing

leverage, future volatility will tend to decrease (reduced feedback intensity) so that future

realized volatility will tend to be lower than the historical one. Therefore, the results of

our model provide a theoretical support for countercyclical capital requirements as often

advocated in the aftermath of the recent financial crises.

Moreover, it is important to notice that a given negative realization of the exogenous

factor ft, will trigger a sequence of portfolio rebalances causing the price of all risky assets

to decay for several periods. Within our framework, we can explicitly compute the expected

impact on the future return dynamics triggered by a given common shock.

Being et = Φrt (from equation 18), the vector of investment returns also follows a
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VAR(1)

rt = et−1 + ιft + εt = Φrt−1 + ιft + εt. (40)

The total future impact of the shocks over the next h periods will be given by the h-period

cumulative mean return conditioned on the factor shock f shockt , which is (for h sufficiently

large)

E
[
rt:t+h|f shockt

]
≈ (I−Φ)−1 ιf shockt . (41)

Hence, the larger the maximum eigenvalue of Φ the larger will be the magnitude and persis-

tence of future adjustments leading to a larger cumulative impact that the financial system

will have to absorb. So the larger the maximum eigenvalue the higher will be the probability

that the system, because of capital or liquidity constraints, will not be able to absorb the

initial shock. This also means that systemic risk is positively related to the magnitude of

the eigenvalues of the matrix Φ.

4 Discussion: Introducing financial innovations

The results on the dynamics of the asset prices can be summarized as follows. When the costs

of diversification c are high, the degree of diversification i.e. the number of asset m randomly

selected and the degree of leverage are small. Thus the portfolio of the financial institutions

are heterogeneous and little leveraged. Therefore, the endogenous feedbacks, coming from

the amplification of individual demands induced by leverage targeting (as illustrated in the

previous section), are of moderate size and uncoordinated. Thus, an amplification mechanism

at the aggregate level between asset values and prices of risky investments will not tend to

arise.

We now discuss the effect of the introduction of financial innovation products (such as

securitization of mortgages or ABS products) that permits to reduce the cost of diversification

c. Despite the simplicity of our framework, the introduction of financial innovation has

several important consequences. First, a financial innovation which reduces the cost of

diversification c, by increasing the optimal level of diversification m, reduces the volatility

of the portfolio which in turns increase the leverage of the institution. In this way, financial
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innovation will tend to increase the degree of leverage in the system. By increasing the

leverage, the individual exposition to the undiversifiable macro factor risk increases; i.e.,

although each individual is more resilient to idiosyncratic shocks, they become more sensitive

to the shocks in the macro factor.

Second, by increasing m, the overlap in the portfolios of the different financial institutions

will be larger, increasing the ”similarity” of the portfolio choices among the investors and,

thereby, increasing the correlations among portfolio returns and balance sheet dynamics.

Third, an increase in leverage will heavily affect the dynamics of the risky investments

by increasing both their variances, covariances and correlations, through a strengthening of

the endogenous component.

As a consequence of these effects, individual reactions in terms of asset demands will

be more aggressive (due to higher leverage) and more coordinated (because of the larger

correlation in the profits-losses realizations). This rise in the strength and coordination of

the individual reactions will make more likely to have aggregate feedback in which the rise of

the price of some investments leads to an excess of equity (by the realized capital gains) and,

hence, to an expansion of the balance sheets driving new demands for the asset which pushes

the price up and so on. The very same mechanism will operate also in the opposite direction

during market crisis when the aggregate feedback will aggravate price declines and balance

sheet contractions. When the diversification cost falls below a given threshold (implying the

maximum eigenvalue of the vector return process exceeding one) the aggregate feedback will

produce price and balance sheet dynamics that become explosive in a finite time i.e. that

have a finite time singularity (as in the somewhat related model of Corsi and Sornette 2010).

These feedbacks could be reinforced even further by endogenizing the dynamics of financial

innovation or, as in Brunnemeier and Pedersen (2008), that of the market liquidity.

Therefore, through these mechanisms reinforcing the endogenous feedback, financial in-

novation can give rise to a steep growth (bubble) and plunge (burst) of market prices and

banking sector total assets. As explained by Adrian and Shin (2010), the total asset of the

banking sector is the relevant variable for the determination of the amount of credit supplied

to the financial and real sector. Hence, an increase in the variability of the total asset of the

banking sector will have major consequences on the availability of funding to the economy
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Figure 8: Numerical simulation of the dynamics of individual total asset of financial institu-

tions (left panel) and total asset of the whole banking system (right panel) before and after

a structural break (at simulation time 1000) on the diversification costs that induces an

increase of leverage and diversification. Leverage goes from 10 to 60 and fractional overlap

from 0.1 to 0.8 .

causing the instability to be transmitted from the financial sector to the real one.

To visually illustrate the impact on the dynamics of financial intermediaries total asset

of a shift in the degree of leverage and diversification induced by a reduction in the diver-

sification costs, we simulate the bank asset dynamics with a structural break represented

by a sudden increase (at simulation time 1000) in the degree of leverage and diversification.

Going from a low level of leverage and diversification to a high level we observe: (i) a dra-

matic increase in the correlation and amplitude of the changes in the total asset of individual

financial institutions, see left panel of Figure 8 , and (ii) a sudden shift in the total banking

sector assets, which will imply going from an approximately constant supply of credit to a

regime with wide swings in the credit supply (right panel of Figure 8).

5 Conclusions

By exploiting basic common practice accounting and risk management rules, we propose a

simple analytical dynamical framework to investigate the effects of micro-prudential changes

on macro-prudential outcomes. Specifically, we study the consequence of the introduction of

a financial innovation that allows reducing the cost of portfolio diversification in a financial

system populated by financial institutions having capital requirements in the form of VaR
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constraint and following standard mark-to-market and risk management rules. We provide a

fully analytical quantification of the multivariate feedback effects between investment prices

and bank behavior induced by portfolio rebalancing and show how changes in the constraints

of the bank portfolio optimization endogenously drive the dynamics of the balance sheet

aggregate of financial institutions and, thereby, the availability of bank liquidity to the

economic system and systemic risk.

The analytical results obtained by applying our simple framework are manifolds: (i) a

reduction of diversification costs, by increasing the level of diversification and hence relaxing

the VaR constraint, allows the financial institutions to increase the optimal leverage; (ii)

it also increases the degree of overlap, and thereby correlation, between the portfolios of

financial institutions; (iii) even in absence of feedback effects, higher degree of diversification

increases both the probability of default of single institutions (in case of large systematic

shocks) and the correlations among them, thus exposing the economy to a higher level of

systemic risk; (iv) the higher overlap induced by a reduction in diversification costs increases

both the variance and correlation of the investment demands of financial institutions re-

balancing their portfolios; (v) the dynamic interaction between investment prices and bank

behavior induced by portfolio rebalancing leads to a multivariate VAR process whose max-

imum eigenvalue depends on the degree of leverage and on the average illiquidity of the

assets; (vi) higher diversification, by increasing the strength and coordination of individual

feedbacks, can lead to dynamic instability of the system; (vii) the VAR process can be rep-

resented as a combination of many idiosyncratic AR processes around a single common AR

process of the average values; (viii) the endogenous feedback introduces an additional com-

ponent to the variance, covariance and correlation of both the individual investment assets

and the bank portfolios; (ix) both the variance and correlation of individual investments

monotonically increase with a reduction in the diversification costs; (x) a simple variance

multiplier exists for the variance of the observed market portfolio. (xi) the relation between

the variance of the portfolio and diversification costs is non-monotonic as it initially declines

with costs while then rapidly increases when the reduction of diversification costs makes

the system approaching its critical point causing the variance to explode; (xii) the effects

of the endogenous feedback make historical estimation of variances and covariances to be
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overestimated during periods of increasing leverage and underestimated during periods of

deleveraging, thus providing a rationale for the adoption of countercyclical capital require-

ments; (xiii) in presence of endogenous feedbacks, a negative realization of the systematic

component will trigger a sequence of portfolio rebalances which will amplify, over time, its

initial impact; (xiv) the variability of total asset of the banking sector, which governs the

expansion and contraction of the supply of credit and liquidity to financial system, is highly

sensitive to variation in the costs of diversification.
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Appendices

A Portfolio rebalance

Given that A∗j,t = λEj,t, the difference between the desired amount of asset (A∗j,t) and the
actual one (Aj,t) can be written as (dropping the sub-index j for sake of notation simplicity):

∆Rt ≡ A∗t − At
= λEt − At
= λ(Et−1 + rptA

∗
t−1)− (1 + rpt )A

∗
t−1

= λ

(
A∗t−1

λ
+ rptA

∗
t−1

)
− (1 + rpt )A

∗
t−1

= (λ− 1)rptA
∗
t−1
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B Derivation for the demand function

B.1 Approximation of the demand function

We start from the expression of Eq. (12) for the demand Di,t,

Di,t =
N∑
j=1

I{i∈j}(λ− 1)rpj,t
A∗j,t−1

m
(42)

where I{i∈j} is the indicator function which takes value one when investment i is in the
portfolio of institution i and zero otherwise.

We assume that total assets are approximately the same for all the banks, i.e. A∗j,t ' A∗t ,
and thus

Di,t ≈ (λ− 1)
A∗t−1

m

N∑
j=1

I{i∈j}r
p
j,t. (43)

Since

rpj,t =
1

m

M∑
k=1

Ik∈jrk,t (44)

the sum in the above expression for D can be rewritten as

1

m

N∑
j=1

I{i∈j}

M∑
k=1

Ik∈jrk,t (45)

In order to calculate this term, we need to consider all the banks having investment i in
their portfolio and then, for each investment k (including i) we have to count the number of
them having investment k in their portfolio. This is of course a random variable and we use
averages. On average there are Nm/M banks having investment i in the portfolio. All of
them have (by definition) investment i in the portfolio. On the other hand, for an investment
k 6= i, we can consider the restricted bipartite network of Nm/M banks, each having m− 1
investments among a universe of M − 1 (we know with certainty that they have investment
i). Therefore the number of banks having investment i in their portfolio and having also
investment k is Nm

M
m−1
M−1

. Thus the sum in Eq. (45) can be rewritten as

N

M

(
ri,t +

m− 1

M − 1

∑
k 6=i

rk,t

)
(46)

and the demand is

Di,t ≈ (λ− 1)
A∗t−1

m

N

M

(
ri,t +

m− 1

M − 1

∑
k 6=i

rk,t

)
(47)

i.e. Eq. (13).
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B.2 Demand correlation

The variance of the demand of investment i, Di is,

V (Di) =
1

m2

N2

M2

[(
1 + (M − 1)

(
m− 1

M − 1

)2
)

(σ2
f + σ2

ε ) +

+

(
2(M − 1)

m− 1

M − 1
+ (M2 − 3M + 2)

(
m− 1

M − 1

)2
)
σ2
f

]
(48)

and the covariance between demand of investment i and j is,

Cov(Di, Dj) =
1

m2

N2

M2

[(
2
m− 1

M − 1
+ (M − 2)

(
m− 1

M − 1

)2
)

(σ2
f + σ2

ε ) +

+

(
1 + 2(M − 2)

m− 1

M − 1
+ (M2 − 3M + 3)

(
m− 1

M − 1

)2
)
σ2
f

]
. (49)

Hence, the correlation becomes

ρ(Di, Dj) =

(
2m−1
M−1

+ (M − 2)
(
m−1
M−1

)2
)(

σ2
f + σ2

ε

)
+

(
1 + 2(M − 2)m−1

M−1
+ (M2 − 3M + 3)

(
m−1
M−1

)2
)
σ2
f(

1 + (M − 1)
(
m−1
M−1

)2
)(

σ2
f + σ2

ε

)
+

(
2(M − 1)m−1

M−1
+ (M2 − 3M + 2)

(
m−1
M−1

)2
)
σ2
f

−−−−−→
m→M

1

(50)

C VAR Eigenvalues

In this Appendix we derive the eigenvalues of Ψ and (in an approximate form) of (λ−1)Γ−1Ψ.
First of all we notice that the matrix Ψ has all diagonal elements equal to d = 1/m and all
the off diagonal elements equal to doff = 1

m
m−1
M−1

. Thus, (λ− 1)Γ−1Ψ− IΛ can be rewritten
as6

(λ− 1)Γ−1Ψ− IΛ = A+ uv′ (51)

where

A = diag[gi(d− doff)− Λ] (52)

u = (g1 . . . gM)′ (53)

v = (doff . . . doff)′ (54)

6Please note that we denote the eigenvalue with Λ while the common notation λ is devoted, throughout

the paper, to denote the leverage.
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where we have set gi = (λ− 1)γ−1
i . In order to compute the characteristic polynomial of the

matrix we can use the Sherman-Morrison formula

det(A+uv′) = (1+v′A−1u) detA =

(
1 + doff

M∑
i=1

gi
gi(d− doff)− Λ

)
M∏
i=1

[gi(d−doff)−Λ] (55)

Setting this expression to zero and solving for Λ gives the eigenvalues, but the equation
cannot be solved analytically in general.

If all the liquidity parameters γi are equal to γ, the above expression simplifies to

[g(d− doff)− Λ]M−1[g(d− doff)− Λ + bMg] = 0 (56)

Thus in the degenerate case, the spectrum is composed by M − 1 degenerate (and small)
eigenvalues equal to g

m
M−m
M−1

and one large eigenvalue equal to g = (λ− 1)γ−1.
When the liquidity parameters are different, we can expect that the spectrum has the

same characteristics and the large eigenvalue is determined by setting to zero the first term
in brackets of Equation 55, i.e.

1 + doff

M∑
i=1

gi
gi(d− doff)− Λ

= 0 (57)

Since the eigenvalue is large, we can approximate this equation with 1 − doff

∑
i gi/Λ ' 0,

i.e.

Λ ' doff

M∑
i=1

gi = (λ− 1)
m− 1

m

M

M − 1
γ−1 ' (λ− 1)γ−1 (58)

where

γ−1 =
1

M

M∑
i=1

1

γi
(59)

is the average of the inverse of the liquidity parameters. For a discussion of the validity of
this approximation, see Lillo and Mantegna (2005)

D Endogenous variance and covariance

Recalling that

ei,t = (1− b) a(ei,t−1 + εi,t) + b Ma(ēt−1 + ε̄t),

ēt = a(1− b+ bM)(ēt−1 + ε̄t) ≡ φ(ēt−1 + ε̄t),

with scalar a = λ−1
mγ

, b = m−1
M−1

, and φ = a(1 − b + bM), and that stationarity of et implies
γ > λ− 1, we have that

V (ēt) =
φ2V (ε̄)

1− φ2
=

(λ− 1)2(σ2
f + σ2

ε

M
)

γ2 − (λ− 1)2
=

Λ2
max

1− Λ2
max

(
σ2
f +

σ2
ε

M

)
(60)

33



and

Cov(ei,t, ēt) = φabMV (ēt) + φa(1− b)Cov(ei,t, ēt) + φ2(σ2
f +

σ2
ε

M
)

=
φabMV (ēt) + φ2(σ2

f + σ2
ε

M
)

1− φa(1− b)

=
(λ− 1)2(σ2

f + σ2
ε

M
)

γ2 − (λ− 1)2

=
Λ2

max

1− Λ2
max

(
σ2
f +

σ2
ε

M

)
= V (ēt). (61)

Hence, the variance of ei,t reads

V (ei,t) = a2(1− b)2V (ei,t) + a2b2M2V (ēt) + 2a2b(1− b)MCov(ei,t, ēt) +

+ a2(1− b)2(σ2
f + σ2

ε ) + a2(b2M2 + 2b(1− b)M)(σ2
f + σ2

ε /M)

=

(
a2b2M2 + 2a2b(1− b)M

)
V (ēt) + a2(1− b)2(σ2

f + σ2
ε ) + a2(b2M2 + 2b(1− b)M)(σ2

f +
σ2
ε

M )

1− a2(1− b)2
(62)

and the covariance between two different stocks is

Cov(ei,t, ej,t) = a2(1− b)2Cov(ei,t, ej,t) + a2b2M2V (ēt) + 2a2b(1− b)MCov(ei,t, ēt)

+ a2(b2M2 + 2b(1− b)M)(σ2
f +

σ2
ε

M
+ a2(1− b)2σ2

f )

=

(
a2b2M2 + 2a2b(1− b)M

)
V (ēt) + a2(b2M2 + 2b(1− b)M)(σ2

f +
σ2
ε

M ) + a2(1− b)2σ2
f

1− a2(1− b)2
(63)

By substituting back a, b, φ, and V (ēt), and defining λ̃ = λ− 1 we get the expression of the
variance and covariance of ei,t in terms of the original variables:

V (ei,t)=−
λ̃2

(
m2

(
σ2
ε

(
λ̃2−γ2(M−1)

)
+σ2

f

(
λ̃2−γ2(M−1)2

))
+2m

(
M

(
σ2
ε

(
γ2−λ̃2

)
−λ̃2σ2

f

)
−γ2σ2

ε

)
+M

(
M

(
σ2
ε

(
λ̃2−γ2

)
+λ̃2σ2

f

)
+γ2σ2

ε

))
(
γ2−λ̃2

) (
m2

(
γ2(M−1)2−λ̃2

)
+ 2λ̃2mM−λ̃2M2

)
(64)

Cov(ei,t, ej,t) = −
λ̃2

(
m2

(
σ2
f

(
λ̃2 − γ2(M − 1)2

)
− γ2(M − 2)σ2

ε

)
− 2m

(
λ̃2Mσ2

f + γ2σ2
ε

)
+M

(
λ̃2Mσ2

f + γ2σ2
ε

))
(
γ2 − λ̃2

)(
m2

(
γ2(M − 1)2 − λ̃2

)
+ 2λ̃2mM − λ̃2M2

)
(65)

and that of the correlations

Corr(ei,t, ej,t)=
m2

(
γ2(M−2)σ2

ε+ σ2
f

(
γ2(M−1)2−λ̃2

))
+ 2m

(
λ̃2Mσ2

f+ γ2σ2
ε

)
−M

(
λ̃2Mσ2

f+ γ2σ2
ε

)
m2

(
σ2
ε

(
γ2(M−1)−λ̃2

)
+ σ2

f

(
γ2(M−1)2−λ̃2

))
+ 2m

(
M

(
σ2
ε

(
λ̃2−γ2

)
+ λ̃2σ2

f

)
+ γ2σ2

ε

)
+M

(
M

(
σ2
ε

(
γ2−(λ−1)2

)
−λ̃2σ2

f

)
−γ2σ2

ε

)
(66)

for which we can prove Corr(ei,t, ej,t) −−−→
m→M

1.
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Finally, we compute the variance of the sum of all the portfolios held by the N banks.
Using equation (28) and (30) for V

(
rpj,t
)

and Cov
(
rph,t, r

p
k,t

)
, we have

V

(
N∑
j=1

rpj,t

)
=NV

(
rpj,t
)

+N(N−1)Cov
(
rph,t, r

p
k,t

)
= N(m3

(
λ̃2σε

(
−γ2 + λ̃2 +N

(
γ2(M−1)2−λ̃2

))
+ γ2MNσf

(
γ2(M−1)2−(λ−1)2

))
+m2M(

σε

(
3λ̃2

(
γ2−(λ−1)2

)
+N

(
3λ̃4−γ2λ̃2

(
M2−2M + 2

)
+ γ4(M−1)2

))
+ 2γ2λ̃2MNσf

)
−λ̃2mM2

(
γ2MNσf + σε

(
3
(
γ2−λ̃2

)
+N

(
3λ̃2−2γ2

)))
+ λ̃2M3(N−1)σε

(
λ̃2−γ2

)
)/

mM
(
γ2−λ̃2

)(
m2
(
γ2(M−1)2−λ̃2

)
+ 2λ̃2mM−λ̃2M2

)
(67)

which reduces to

V

(
N∑
j=1

rpj,t

)
−−−→
m→M

γ2N2(σf + σε
M

)(
γ2 − λ̃2

) =
N2σ2

pM

1− Λmax

(68)

35


