Instituto Superior de Economia e Gestão Análise Matemática I Licenciatura em MAEG 1°Semestre 2007/2008

Época de Recurso: 29 de Janeiro de 2009 Duração: 2 horas

Justifique cuidadosamente todas as suas respostas.

(3,5) 1. (a) Prove, utilizando o princípio de indução matemática, que, para todo o $n \in \mathbb{N}$

$$1 + 2^2 + \ldots + n^2 = \frac{1}{6}n(n+1)(2n+1).$$

- (b) Sendo $A = \{x \in \mathbb{R} : |x^2 3| \le 1\} \cap \mathbb{R} \setminus \mathbb{Q}$ indique o conjunto dos majorantes de A, o seu mínimo (caso exista) e a sua fronteira.
- (3,5) 2. (a) Calcule a área da figura plana limitada pelas rectas de equações x=1/2, x=2, pelo eixo das abcissas e pelo gráfico da função $f(x)=\frac{\ln(x)}{x}$.
 - (b) Calcule uma primitiva da função $f(x) = \frac{3}{x^4 + x^2}$.
- (5,0) 3. Considere $f: \mathbb{R} \to \mathbb{R}$ função definida por

$$f(x) = \begin{cases} \ln(x + \sin(x - 1)) + \pi/4 & \text{se } x > 1\\ \arctan(x) + k(x - 1) & \text{se } x \le 1 \end{cases}$$

- (a) Calcule D_f .
- (b) Indique, caso exista, o valor de k de forma a que f seja diferenciável em x = 1.
- (c) Calcule f'(x) para $x \neq 1$.
- (d) Indique, justificando, o valor lógico da seguinte proposição:

$$\exists x \in]\pi + 1, 3\pi + 1[: f''(x) = 0.$$

(3,0) 4. Escreva o polinómio de MacLaurin de ordem 2 da função $f(x) = \cos^2 x$ e utilize o resultado obtido e o teorema de Taylor para calcular o seguinte limite:

$$\lim_{x \to 0} \frac{\cos^2 x - 1 + 2x^2}{x^2}.$$

(2,5) 5. Estude, em função do parâmetro α , a convergência do seguinte integral:

$$\int_3^{+\infty} \frac{x+2}{\sqrt{x}(x^2-9)^{\alpha}} dx.$$

(2,5) 6. Considere $f: \mathbb{R} \to \mathbb{R}$ uma função contínua em \mathbb{R} tal que f(x).x > 0, para todo $x \neq 0$. Seja F função tal que $F(x) = \int_0^x f(t)dt$. Prove que $F \circ F$ tem um mínimo em x = 0. Sugestão: estude o sinal de $(F \circ F)'$;