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Av. Rovisco Pais, 1049-001 Lisboa, Portugal

May 28, 2012

1 Introduction

The photography industry underwent a disruptive change in technology during the 1990s when the traditional

film was replaced by digital photography (see e.g. The Economist January 14th 2012). In particular Kodak

was largely affected : by 1976 Kodak accounted for 90% of film and 85% of camera sales in America. Hence

it was a near-monopoly in America. Kodaks revenues were nearly 16 billion in 1996 but the prediction is

that it will decrease to 6.2 billion in 2011.

Kodak tried to get (squeeze) as much money out of the film business as possible and it prepared for the

switch to digital film. The result was that Kodak did eventually build a profitable business out of digital

cameras but it lasted only a few years before camera phones overtook it.

According to Mr Komori, the former CEO of Fujifilm of 2000-2003, Kodak aimed to be a digital company,

but that is a small business and not enough to support a big company. For Kodak it was like seeing a tsunami

coming and theres nothing you can do about it, according to Mr. Christensen in The Economist (January

14th 2012).

This paper focuses on industries that have to deal with technological change. The above example showed

that this can be a burden. However there are enough industries where technological change brings fruitful

times in terms of profits. One example is the video game industry, where innovation plays a big role.

The publishers, Activision, saw their worldwide sales increase with $650m in the first five days, when the

new video game “Call of Duty: Black Ops” replaced its predecessor, Call of Duty: Modern Warfare 2, in

November 2010 (The Economist, December 10th 2011). (Another example is the IPhone launched by Apple

was described by Time Magazine as ”the invention of the year 2007“. In 2011 net income was $7.31bn
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(4.6bn) in the three months to 25 June, 125% higher than a year earlier and a record quarterly profit for the

firm. Revenue was $28.6bn, also a quarterly record.)

We study the problem of a firm that produces with a current technology for which it faces a declining

sales volume. It has two options: it can either exit this industry or invest in a new technology with which

it can produce an innovative product. We distinguish between two scenarios in the sense that the resulting

new market can be booming or ends up to be smaller than the old market used to be.

2 Change Model

Assumptions: γ > µ.

3 Model

The firm currently produces an established product. The quantity, which has to be determined at each point

of time, is q1, the price is p1 and the inverse demand function is given by

p1 = µθ − q1,

in which

dθ = α1θdt+ σθdz.

where α1 < 0. We distinguish between two types of cost. On the one hand it faces a fixed cost K. On the

other hand the firm has to incur unit production costs being equal to c. Due to the latter feature it can be

optimal to temporarily suspend production, i.e. q1 = 0 for some time.

The firm has the option to start producing an innovative product which requires paying a sunk cost I.

Denoting the price and the quantity of the new product by p2 and q2, respectively, and the moment of the

new product launch the firm’s demand function changes into:

p2 = γθ − q2.

Because this innovative market grows faster than the old one, we assume a different speed of development.

In particular the dynamics of θ now becomes

dθ = α2θdt+ σθdz.

with α2 > α1. In fact, we can define the stochastic process θ(t) as follows

dθ(t) = α(t)θ(t)dt + σθ(t)dz.
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with

α(t) =







α1 for t < τ∗

α2 for t ≥ τ∗
(1)

where this τ∗ will be specified later.

The cost structure for the new product also changes after the new product launch. Whereas the fixed

cost still equals K, there are no variable cost. We motivate this by observing that in the digital world the

unit cost of a product is most of the time very small or negligible.

It can be the case that the new market is not profitable enough for an investment to be undertaken.

Since the old market is decreasing over time it can be optimal for the firm to exercise the option to exit the

market. We also allow for the possibility to exit market after the investment in the innovative product has

taken place.

Therefore, the optimal stopping problem can be stated as follows:

V(θ0) = sup
τ1

IE

[
∫ τ1

0
e−rtΠ1(θ1(t))dt + e−rτ1

max

(

0, sup
τ21{τ2>τ1}

IE

[
∫ τ2

τ1

e−r(t−τ1)Π2(θ2(t− τ1))dt− I

∣

∣

∣

∣

θ2(0) = θ1(τ1)

])
∣

∣

∣

∣

∣

θ1(0) = θ0

]

(2)

Here, τ1 denotes the first time at which the decision maker decides to invest in product 2 or exit the market.

τ2 denotes the time that the firm would decide to exit the market of product 2, in case it has invested in the

first run.

To determine the value of investing in project 2, we first solve the subproblem that is stated at the right

hand side of the maximization in equation (2). Considering a specific current value for θ2(0) the net expected

discounted profit of investing in project 2 is given by:

V2(θ2(0)) = sup
τ2

IEθ2(0)

[
∫ τ2

τ1

e−r(t−τ1)Π2(θ2(t− τ1))dt− I

]

(3)

= sup
τ2

IEθ2(0)

[
∫ τ2−τ1

0
e−rtΠ2(θ2(t))dt− I

]

(4)

= sup
τ̃

IEθ2(0)

[

∫ τ̃

0
e−rtΠ2(θ2(t))dt− I

]

(5)

where IEθ denotes the expectation with respect to the probability law Qθ of the process θ(t); t > 0 starting

at θ(0) = θ ∈ Rn. The optimal stopping problem in (3) is a standard problem. The instantaneous profits in

region 2 are given by

Π2 = p2q2 −K = (γθ − q2)q2 −K (6)

The optimal quantity equals q2 = γθ
2 which results in a profit of

Π2(θ) =
γ2θ2

4
−K. (7)
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Taking into account that there is an option to exit the market, standard calculations lead to the following

expression for the optimal value function V2:

V2(θ2(0)) =
γ2θ2(0)2

4(r − 2α2 − σ2)
−

K

r
+Aθ2(0)

β4 . (8)

where β4 is the negative root of the quadratic equation 1
2σ

2β(β − 1) + α2β − r = 0.

In order to derive the constant parameter A we study the decision to exit the market. Denoting the exit

threshold by θ̂2, we can write down the following value matching and smooth pasting conditions:

V2(θ)|θ=θ̂2
= 0, (9)

∂V2(θ)

∂θ

∣

∣

∣

∣

θ=θ̂2

= 0, (10)

from which we can derive that

θ2(τ̃) =

√

K

γ2r
4(r − 2α2 − σ2)

(

β4

β4 − 2

)

, (11)

A =
1

θ2(τ̃ )β4

K

r

(

2

2− β4

)

. (12)

where θ2(τ̃ ) is the critical demand level above which it is optimal to exit the market.

This results in the following value function V2

V2(θ) =
γ2θ2

4(r − 2α2 − σ2)
−

K

r
+

(

θ

θ2(τ̃ )

)β4 K

r

(

2

2− β4

)

. (13)

Now we can write equation (2) as

V(θ0) = sup
τ1

E

[
∫ τ1

0
e−rtΠ1(θ1(t))dt + e−rτ1 max (0, V2(θ2(0) = θ1(τ1))− I)

∣

∣

∣

∣

θ1(0) = θ0

]

(14)

Now we consider the situation before the investment. The firm has essentially three options. The first is

to invest in product 2. The second is to suspend production. And the third is to exit the market. Let us

first determine the current instantaneous profits. Maximizing the profit function w.r.t to the optimal output

quantity, we derive that:

q1 =
µθ − c

2
(15)

From this expression we see that the firm will suspend production provided that it has not exited already

whenever θ is below c
µ
. The instantaneous profit when q1 is positive equals:

Π1(θ) =







(

µθ−c
2

)2
−K for θ > c

µ
,

−K for θ ≤ c
µ .

(16)

Denoting the exit threshold by θ̂1 we can consider the following two cases: If θ̂1 ≥ c
µ
then the firm will

never suspend production because it already has exited. If θ̂1 < c
µ
there exists a θ-interval, where it is optimal
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for the firm to suspend production. In this region the firm has two options: either to resume production if θ

has increases sufficiently or to exit the market, which will happen when θ decreases even more. The following

Proposition states the the there always exists the optimal policy for the stopping problem and specifies the

optimal value function of the firm.

Proposition 1 The optimal policy for the stopping problem of equation (2) always exists. The optimal

value function is uniquely given by

V (θ) =







V1(θ) for θ ∈ D∗ = (θ̂1, θ∗)

Ω(θ) otherwise.
(17)

where we distinguish two cases for the function V1(.). If θ̂1 ≥ c
µ then the function is equal to

V1(θ) =
µ2θ2

4(r − 2α1 − σ2)
−

cµθ

2(r − α1)
+

c2

4r
−

K

r
+A1θ

β1 +A2θ
β2 (18)

while for case θ̂1 < c
µ
the function is equal to

V1(θ) =







µ2θ2

4(r−2α1−σ2) −
cµθ

2(r−α1)
+ c2

4r − K
r
+B1θ

β1 +B2θ
β2 for θ ≥ c

µ

−K
r
+B3θ

β1 +B4θ
β2 for θ < c

µ

(19)

if θ∗ > c
µ
and equal to

V1(θ) = −
K

r
+ C1θ

β1 + C2θ
β2 (20)

if θ∗ < c
µ
. The value of the firm in the stopping region is equal to Ω(θ) = max (0, V2(θ2(0) = θ)).

The optimal continuation region is D∗ = (θ̂1, θ∗). It is optimal to exit the market when θ < θ̂1 and invest in

the new product when θ > θ∗. Otherwise, it is optimal to continue operations.

In order to derive the two thresholds θ∗ and θ̂1 we apply the value matching and smooth pasting conditions

which leads to the following equation systems that implicitly define the thresholds for the different cases.

Value matching and smooth pasting for case θ̂1 ≥ c
µ
:

V1(θ)|θ=θ̂1
= 0 (21)

∂V1(θ)

∂θ

∣

∣

∣

∣

θ=θ̂1

= 0 (22)

V1|θ=θ∗ = V2 − I|θ=θ∗ (23)

∂V1

∂θ

∣

∣

∣

∣

θ=θ∗

=
∂V2

∂θ

∣

∣

∣

∣

θ=θ∗

(24)
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µ2θ̂21
4(r − 2α1 − σ2)

−
cµθ̂1

2(r − α1)
+

c2

4r
−

K

r
+A1θ̂

β1

1 +A2θ̂
β2

1 = 0 (25)

2µ2θ̂1
4(r − 2α1 − σ2)

−
cµ

2(r − α1)
+ β1A1θ̂

(β1−1)
1 + β2A2θ̂

(β2−1)
1 = 0 (26)

µ2 (θ∗)2

4(r − 2α1 − σ2)
−

cµ (θ∗)

2(r − α1)
+

c2

4r
−

K

r
+A1 (θ

∗)β1 +A2 (θ
∗)β2

=
γ2 (θ∗)2

4(r − 2α2 − σ2)
−

K

r
+

(

(θ∗)

θ̂2

)β4 K

r

(

2

2− β4

)

− I (27)

2µ2 (θ∗)

4(r − 2α1 − σ2)
−

cµ

2(r − α1)
+ β1A1 (θ

∗)(β1−1) + β2A2 (θ
∗)(β2−1)

=
2γ2 (θ∗)

4(r − 2α2 − σ2)
+ β4

1

θ̂2

(

(θ∗)

θ̂2

)(β4−1)
K

r

(

2

2− β4

)

(28)

If θ∗ > c
µ
> θ̂1 then

V1,1|θ= c
µ

= V1,2|θ= c
µ

(29)

∂V1,1

∂θ

∣

∣

∣

∣

θ= c
µ

=
∂V1,2

∂θ

∣

∣

∣

∣

θ= c
µ

(30)

V1,1 = 0 (31)

∂V1,1

∂θ

∣

∣

∣

∣

θ=θ̂1

= 0 (32)

V1,2 = V2 − I (33)

∂V1,2

∂θ

∣

∣

∣

∣

θ=θ∗

=
∂V2

∂θ

∣

∣

∣

∣

θ=θ∗

(34)

µ2
(

c
µ

)2

4(r − 2α1 − σ2)
−

cµ
(

c
µ

)

2(r − α1)
+

c2

4r
−

K

r
+B1

(

c

µ

)β1

+B2

(

c

µ

)β2

= −
K

r
+B3

(

c

µ

)β1

+B4

(

c

µ

)β2

(35)

2µ2
(

c
µ

)

4(r − 2α1 − σ2)
−

cµ

2(r − α1)
+ β1B1

(

c

µ

)(β1−1)

+ β2B2

(

c

µ

)(β2−1)

= β1B3

(

c

µ

)(β1−1)

+ β2B4

(

c

µ

)(β2−1)

(36)

−
K

r
+B3θ̂

β1

1 +B4θ̂
β2

1 = 0 (37)

β1B3θ̂
(β1−1)
1 + β2B4θ̂

(β2−1)
1 = 0 (38)

µ2 (θ∗)2

4(r − 2α1 − σ2)
−

cµ (θ∗)

2(r − α1)
+

c2

4r
−

K

r
+B1 (θ

∗)β1 +B2 (θ
∗)β2 =

γ2 (θ∗)2

4(r − 2α2 − σ2)
−

K

r
+

(

(θ∗)

θ̂2

)β4 K

r

(

2

2− β4

)

− I (39)

2µ2 (θ∗)

4(r − 2α1 − σ2)
−

cµ

2(r − α1)
+ β1B1 (θ

∗)(β1−1) + β2B2 (θ
∗)(β2−1) =

2γ2 (θ∗)

4(r − 2α2 − σ2)
+ β4

1

θ̂2

(

(θ∗)

θ̂2

)(β4−1)
K

r

(

2

2− β4

)

(40)
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If c
µ > θ∗ > θ̂1 then

V1,1 = 0 (41)

∂V1,1

∂θ

∣

∣

∣

∣

θ=θ̂1

= 0 (42)

V1,1 = V2 − I (43)

∂V1,1

∂θ

∣

∣

∣

∣

θ=θ∗

=
∂V2

∂θ

∣

∣

∣

∣

θ=θ∗

(44)

−
K

r
+ C1θ̂

β1

1 + C2θ̂
β2

1 = 0 (45)

β1C1θ̂
(β1−1)
1 + β2C2θ̂

(β2−1)
1 = 0 (46)

−
K

r
+ C1 (θ

∗)β1 + C2 (θ
∗)β2 =

γ2 (θ∗)2

4(r − 2α2 − σ2)
−

K

r
+

(

(θ∗)

θ̂2

)β4 K

r

(

2

2− β4

)

− I (47)

β1C1 (θ
∗)(β1−1) + β2C2 (θ

∗)(β2−1) =
2γ2 (θ∗)

4(r − 2α2 − σ2)
+ β4

1

θ̂2

(

(θ∗)

θ̂2

)(β4−1)
K

r

(

2

2− β4

)

(48)

Proposition 3: The optimal return function V1(.) is convex. The value function in region 2 V2(.) is

convex as well.

4 Numerical Results

In a first step we try to find numerical examples for all 3 cases:

where Case 1 means that there is no suspension region. Case 2 means that the firm exits from the

suspension region and invests from the production region. And Case 3 means that the firm exists as well as

invests from the suspension region.

• Table 4 contains examples of Case 1 and of Case 2.

• Table 5 shows an example for Case 3.

• Comparing Tables 1 and 2 the uncertainty is increases from σ = 0.1 to σ = 0.175.

5 Comparative Statics

Proposition 4: The optimal return function V2(.) is nondecreasing in α1.

Some results:

∂θ̂2
∂K

> 0 ∂V2

∂

∂θ̂2
∂γ < 0

∂θ̂2
∂σ

∂θ̂2
∂α2

< 0

(49)
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Table 1: Parameter Values: σ = 0.1, r = 0.1, c = 0.1, µ = 1, γ = 1.1, K = 1, I = 100 so c
µ = 0.1

α1 = −0.01 α1 = −0.02 α1 = −0.03 α1 = −0.03 α1 = −0.02

α2 = 0.01 α2 = 0.01 α2 = 0.01 α2 = −0.01 α2 = −0.01

θ∗ 7.8002 7.06726 6.61769 10.0606 11.5093

θ̂1 1.72736 1.80236 1.85641 1.85648 1.80258

θ̂2 1.28565 1.28565 1.28565 1.49744

A1 0.0000800014 7.57819∗10−6 5.41195∗10−7 8.38366∗10−9 1.1636∗10−7

A2 23.0758 21.0037 19.0366 19.0372 21.0069

Case θ∗ > θ̂1 > c
µ

θ∗ > θ̂1 > c
µ

θ∗ > θ̂1 > c
µ

Table 2: Parameter Values: σ = 0.175, r = 0.1, c = 0.1, µ = 1, γ = 1.1, K = 1, I = 100 so c
µ
= 0.1

α1 = −0.01 α1 = −0.02 α1 = −0.03 α1 = −0.03 α1 = −0.02

α2 = 0.01 α2 = 0.01 α2 = 0.01 α2 = −0.01 α2 = −0.01

θ∗ 7.33158 6.569 6.09172 9.73558 11.2149

θ̂1 1.3327 1.43258 1.51613 1.54878 1.46914

θ̂2 0.942478 0.942478 0.942478 1.19307 1.19307

A1 0.0750437 0.0396422 0.0190254 0.00170862 0.00300053

A2 9.22285 10.347 11.0699 11.2851 10.6419

Case θ∗ > θ̂1 > c
µ

θ∗ > θ̂1 > c
µ

θ∗ > θ̂1 > c
µ

Case No Suspension No Suspension No Suspension No Suspension No Suspension

Table 3: Parameter Values: σ = 0.1, r = 0.1, c = 0.1, µ = 1, γ = 1.1, K = 1, I=1000 so c
µ
= 0.1

α1 = −0.01 α1 = −0.02 α1 = 1.25 α1 = 1.5 α1 = 1.75

α2 = 0.01 α2 = 0.01 α2 = 0.019 α2 = 0.008 α2 = 0.004

θ∗ 26.1195

θ̂1 1.72793

A1 6.35371∗10−7

A2 23.0896

Case θ∗ > θ̂1 > c
µ
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Table 4: Parameter Values: σ = 0.1, r = 0.1, c = 1, µ = 0.2, γ = 1.1, K = 1, I=100 so c
µ
= 5

α1 = −0.01 α1 = −0.02 α1 = −0.03 α1 = −0.03 α1 = −0.02

α2 = 0.01 α2 = 0.01 α2 = 0.01 α2 = −0.01 α2 = −0.01

θ∗ 5.91384 5.71062 6.76049 6.862

θ̂1 3.84592 4.00893 5.20311 5.056

θ̂2 1.49744

Case θ∗ > c
µ
> θ̂1 θ∗ > c

µ
> θ̂1 θ∗ > θ̂1 > c

µ
θ∗ > θ̂1 > c

µ

Case Suspension Suspension No Suspension No Suspension

Table 5: Parameter Values: σ = 0.1, r = 0.1, c = 1, µ = 0.2, γ = 2, K = 1, I=100 so c
µ
= 5

α1 = −0.01 α1 = −0.01 α1 = α1 = α1 =

α2 = 0.02 α2 = 0.02 α2 = α2 = α2 =

γ = 2 γ = 1.1 γ = γ = γ =

θ∗ 2.74882 4.99786

θ̂1 1.78775 3.25045

θ̂2 0.615062 1.11829

Case c
µ > θ∗ > θ̂1

c
µ > θ∗ > θ̂1

Case Suspension Suspension

Table 6: Parameter Values: α1 = −0.02, α2 = 0.01, r = 0.1, c = 1, µ = 0.2, γ = 1.2, K = 2, I=100 so

c
µ
= 5

σ = 0.075 σ = 0.1 σ = 0.125 σ = 0.15 σ = 0.175

θ∗ 5.30487 5.37763 5.43402 5.45344 5.40902

θ̂1 4.51649 4.08685 3.60464 3.0972 2.58437

θ̂2 1.80293 1.66667 1.52512 1.37752 1.222

Case θ∗ > c
µ
> θ̂1 θ∗ > c

µ
> θ̂1 θ∗ > c

µ
> θ̂1 θ∗ > c

µ
> θ̂1 θ∗ > c

µ
> θ̂1

Case Suspension Suspension Suspension Suspension Suspension

P[first invest] 50.79% 51.71% 52.83%

E[T ∗] 1.11915 1.83247 2.61843
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Table 7: Parameter Values: α1 = −0.02, α2 = −0.01, r = 0.1, c = 1, µ = 0.2, γ = 1.2, K = 2, I=100 so

c
µ = 5

σ = 0.075 σ = 0.1 σ = 0.125 σ = 0.15 σ = 0.175

θ∗ 6.31107 6.29435 6.91264 7.0917 7.26531

θ̂1 5.6842 5.24238 4.58644 4.02971 3.47407

θ̂2 2.06704 1.94122 1.81263 1.68131 1.54665

Case θ∗ > θ̂1 > c
µ θ∗ > θ̂1 > c

µ θ∗ > c
µ > θ̂1 θ∗ > c

µ > θ̂1 θ∗ > c
µ > θ̂1

Case No Suspension No Suspension Suspension Suspension Suspension

5.1 List of Things we planned to do

1. Derive analytical results for effect of parameters on thresholds (see the derivations of Kwong and

Decamps et al.).

2. Thresholds as a function of K.

3. Most important parameters: σ, α1, µ

4. Probability of innovating or exit [Just possible with simulations ]

5. Probability as function of σ, α1, µ [Just possible with simulations ]

6. Expected time of innovation or exit, respectively [Just possible with simulations ]

7. Once in the suspension area - what is the probability of undertaking investment? [Just possible with

simulations ]

8. How long do you stay in the suspension area (before production, invest or exit) [Just possible with

simulations ]

9. Expected time of exit after innovation has taken place. [Derived, have to write down still ]

10. Existence of suspension area: when is it there depending on ?

11. Is is possible to innovate directly from the suspension area? [Yes ]

12. Can we derive conditions that are sufficient to end up in one of the three cases?[Working on]

13. Add different volatility parameters σ1 and σ2. [Later ]
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A Proofs

A.1 Proof of Proposition 1

Lemma 1:Suppose that there exists a solution
(

θ̂1, θ
∗, A1, A2

)

(and
(

θ̂1, θ
∗, B1, B2, B3, B4

)

,respectively) to

equations ()-() that satisfies the constraints:

V1(θ) ≥ h(θ)for θ ∈ (θ̂1, θ
∗) (50)

And for the case θ̂1 ≥ c
µ

2µ2

4(r − 2α1 − σ2)
+ β1(β1 − 1)A1θ

β1−2 + β2(β2 − 1)A2θ
β2−2 ≥ h′′(θ)for θ ∈ {θ̂1, θ∗} (51)

and for the case θ̂1 < c
µ







2µ2

4(r−2α1−σ2) + β1(β1 − 1)B1θ
β1−2 + β2(β2 − 1)B2θ

β2−2 if θ ≥ c
µ

β1(β1 − 1)B3θ
β1−2 + β2(β2 − 1)B4θ

β2−2 if θ < c
µ







≥ h′′(θ)for θ ∈ {θ̂1, θ∗} (52)

Proof of Lemma 1: Now assume that V1(.) in equation (??) is a candidate for the optimal value function.

In the following we verify that V1(.) it indeed satisfies all the sufficient conditions for being the optimal value

function specified in Theorem 10.4.1 of Oksendal (2003). V1(.) is continuous differentiable in R for both

cases since we impose the smooth pasting conditions at the threshold θ̂1 and θ∗ (see equations () and ()).

For case θ̂1 < c
µ

this holds in view of the value matching and smooth pasting conditions imposed at the

point θ = c
µ . Furthermore, V1(.) is twice continuously differentiable except at θ = θ̂1 and θ∗. Condition (ii)

of Theorem 10.4.1 of Oksendal (2003) holds by definition. Conditions (iii), (viii) and (ix) of the theorem in

Oksendal hold trivially because θ follows a geometric Brownian motion. Since V1(.) is a polynomial in θ the

second order derivatives of V1(.) are finite near θ = θ̂1 and θ∗ which relates to condition (v). Moreover, we

introduce the partial differential operator L applied to the process {θ(t); t ≥ 0}:

L =
∂

∂t
+ α(θ)θ

∂

∂θ
+

1

2
σ2θ2

∂2

∂θ2
(53)

and show that conditions (vi) and (vii) hold. Condition (vii), i.e. LV1(θ) + Π1(θ) = 0 for θ ∈ (θ̂1, θ∗) can

easily be verified with straightforward calculations. Condition (vi) has yet to be verified: LV (θ) ≤ Π1(θ) for

θ ∈ R\{θ̂1, θ∗}. In the stopping region it holds

LV (θ) = Lh(θ) =







− γ2θ2

4 +K if θ > θ∗

0 if θ < θ̂1
(54)

Considering equations (52), (33) and (34) (or (52), (23) and (24) equivalently) it follows that limθ↗θ∗ L[V (θ)−

h(θ)] ≥ 0. Furthermore,

lim
θ↘θ∗

LV (θ) = −Π(θ∗) ≥ lim
θ↘θ∗

Lh(θ) = K −
γ2θ2

4
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holds trivially for case θ < c
µ and for case θ ≥ c

µ because

γ2θ2

4
>

(

µθ − c

2

)2

, (55)

θ > −
c

γ − µ
, (56)

because γ > µ. By equations (), () and () it follows that limθ↘θ∗
1
L[V (θ)− h(θ)] ≥ 0. Furthermore,

lim
θ↗θ̂1

LV (θ) = −Π(θ̂1) ≥ 0 = lim
θ↗θ̂1

Lh(θ)

has to hold for case θ̂1 > c
µ
and for case θ̂1 ≤ c

µ
. For θ̂1 > c

µ
:

−Π(θ̂1) > 0 (57)

K −

(

µθ̂1 − c

2

)2

> 0 (58)

For this case we can not show that required relation. Do we have to consider this case? ⇔

Would the firm exit if θ > c
µ , i.e. production stage?

For θ̂1 ≤ c
µ
:

−Π(θ̂1) ≥ 0 (59)

K ≥ 0 (60)

A.1.1 Equations for thresholds

In the following we show that for each of the three equation systems for the thresholds there exists a unique

solution:

For case θ̂1 ≥ c
µ
we consider a solution (θ∗, θ̂1, A1, A2) to Equations (21) - (24). We eliminate A1 and A2

from equations (21) - (24), and obtain

F1 =

(

1−
2

β2

)

[

aθ̂
(2−β1)
1 − (a− d)θ∗(2−β1)

]

− b

(

1−
1

β2

)

[

θ̂
(1−β1)
1 − θ∗(1−β1)

]

+ c
[

θ̂
(−β1)
1 − θ∗(−β1)

]

(61)

− eθ∗(−β1) +Aθ∗(β4−β1)

(

1−
β4

β2

)

− Iθ∗(−β1) = 0 (62)

F2 =

(

1−
2

β1

)

[

aθ̂
(2−β2)
1 − (a− d)θ∗(2−β2)

]

− b

(

1−
1

β1

)

[

θ̂
(1−β2)
1 − θ∗(1−β2)

]

+ c
[

θ̂
(−β2)
1 − θ∗(−β2)

]

(63)

− eθ∗(−β2) +Aθ∗(β4−β2)

(

1−
β4

β1

)

− Iθ∗(−β2) = 0 (64)
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∂F1

∂θ̂1
= (2− β1)

(

1−
2

β2

)

aθ̂
(1−β1)
1 − b(1− β1)

(

1−
1

β2

)

θ̂
(−β1)
1 − β1cθ̂

(−1−β1)
1 (65)

∂F2

∂θ̂1
= (2− β2)

(

1−
2

β1

)

aθ̂
(1−β2)
1 − b(1− β2)

(

1−
1

β1

)

θ̂
(−β2)
1 − β2cθ̂

(−1−β2)
1 (66)

∂F1

∂θ∗
= −(2− β1)

(

1−
2

β2

)

(a− d)θ∗(1−β1) + b(1− β1)

(

1−
1

β2

)

θ∗(−β1) + β1cθ
∗(−1−β1) (67)

+ eβ1θ
∗(−1−β1) + (β4 − β1)

(

1−
β4

β2

)

Aθ∗(β4−β1−1) + β1Iθ
∗(−1−β1) (68)

∂F2

∂θ∗
= −(2− β2)

(

1−
2

β1

)

(a− d)θ∗(1−β2) + b(1− β2)

(

1−
1

β1

)

θ∗(−β2) + β2cθ
∗(−1−β2) (69)

+ β2eθ
∗(−1−β2) + (β4 − β2)Aθ

∗(β4−β2−1)

(

1−
β4

β1

)

+ β2Iθ
∗(−1−β2) (70)

where a = µ2

4(r−2α1−σ2) > 0, b = cµ
2(r−α1)

> 0, c = c2

4r − K
r , d = γ2

4(r−2α2−σ2) > 0 and e = K
r > 0. If we

can show that the determinate of the following matrix is '= 0 then we can conclude that there is a unique

solution to this equation system.
[ ∂F1

∂θ̂1

∂F1

∂θ∗

∂F2

∂θ̂1

∂F2

∂θ∗

]

Therefore, we want to show that ∂F1

∂θ̂1

∂F2

∂θ∗ − ∂F2

∂θ̂1

∂F1

∂θ∗ '= 0.

xxxThis proof is already done but we have to write it down still.xxx

For case θ̂1 < c
µ < θ∗ we consider a solution (θ∗, θ̂1, B1, B2, B3, B4) to Equations (29) - (34). We eliminate

B1, B2, B3 and B4 from equations (29) - (??), and obtain xxxStill has to be derivedxxx

For case c
µ > θ∗ > θ̂1 we consider a solution (θ∗, θ̂1, C1, C2) to Equations () - (). We eliminate C1, C2

from equations () - (), and obtain

F1 = −eθ̂−β1

1 + dθ∗(2−β1)

(

1−
2

β2

)

+Aθ∗(β4−β1)

(

1−
β4

β2

)

− Iθ∗(−β1) = 0 (71)

F2 = −eθ̂−β2

1 + dθ∗(2−β2)

(

1−
2

β1

)

+Aθ∗(β4−β2)

(

1−
β4

β1

)

− Iθ∗(−β2) = 0 (72)

The partial derivatives are

∂F1

∂θ̂1
= β1eθ̂

(−1−β1)
1 (73)

∂F2

∂θ̂1
= β2eθ̂

(−1−β2)
1 (74)

∂F1

∂θ∗
= θ∗(−1−β1)

[

d(2− β1)

(

1−
2

β2

)

θast(2) +A(β4 − β1)

(

1−
β4

β2

)

θ∗(β4) + β2I

]

(75)

∂F2

∂θ∗
= θ∗(−1−β2)

[

d(2− β2)

(

1−
2

β1

)

θ∗(2) +A(β4 − β2)

(

1−
β4

β1

)

θ∗(β4) + β2I

]

(76)

We want to show that ∂F1

∂θ̂1

∂F2

∂θ∗ − ∂F2

∂θ̂1

∂F1

∂θ∗ '= 0.

∂F1

∂θ̂1

∂F2

∂θ∗
−

∂F2

∂θ̂1

∂F1

∂θ∗
= (77)

β1eθ̂
(−1−β1)
1

∂F2

∂θ∗
− β2eθ̂

(−1−β2)
1

∂F1

∂θ∗
(78)
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where C := β1θ
∗(1+β2) ∂F2

∂θ∗ = β2θ
∗(1+β1) ∂F1

∂θ∗ so that eC
[

θ̂
(−1−β1)
1 θ∗(−1−β2) − θ̂

(−1−β2)
1 θ∗(−1−β1)

]

'= 0 holds if

θ∗ '= θ̂1.

A.2 Proposition 2

Proposition 2: The investment is never optimal if and only if the following three conditions hold:

Proof Ve is the value of waiting to exit without having the option to innovate. Case θ̂1:

Ve(θ) =
{

µ2θ2

4(r−2α1−σ2) −
cµθ

2(r−α1)
+ c2

4r − K
r
+Bθβ2 (79)

Value match and smooth paste at θ̂e:

V1(θ̂e) = 0 (80)

∂V1(θ)

∂θ

∣

∣

∣

∣

θ=θ̂e

= 0 (81)

which leads to the following equation that threshold θ̂e has to satisfy

µ2θ̂2e
4(r − 2α1 − σ2)

(

β2 − 2

β2

)

−
cµθ̂e

2(r − α1)

(

β2 − 1

β2

)

+
c2

4r
−

K

r
(82)

Employing the value matching and smooth pasting conditions gives the following exit threshold:

θ̂e =
−b−

√
b2 − 4ad

2a
(83)

where a = µ2

4(r−2α1−σ2)

(

β2−2
β2

)

, b = cµ
2(r−α1)

(

β2−1
β2

)

, d = c2

4r − K
r
. We can rule out the smaller of the two

roots because it occurs in the θ-area where q optimally would be negative, implying that this is an irrelevant

region because θ̂e,2 < c
µ . A sufficient condition for that is −b

2a < c
µ .

−b

2a
<

c

µ
(84)

c

µ

(r − 2α1 − σ2)

r − α1

(β2 − 1)

(β2 − 2)
<

c

µ
(85)

(r − 2α1 − σ2)

r − α1
<

(β2 − 2)

(β2 − 1)
(86)

(−α1 − σ2)β2 + σ2 > −r (87)

σ2 + r >
α1 + σ2

σ2

(

−(α1 −
σ2

2
)−

√

(
α1 − σ2

2
)2 + 2σ2r

)

(88)

sufficient condition for this to be satisfied is

σ2 + r >
α1 + σ2

σ2

(

−(α1 −
σ2

2
)

)

(89)

(90)
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If α1 + σ2 < 0 this holds. Otherwise,

σ2 + r >
α1 + σ2

σ2

(

−(α1 − σ2)
)

= −(α2
1 − σ4) >

α1 + σ2

σ2

(

−(α1 −
σ2

2
)

)

(91)

which leads to

σ2 + r > −
(α2

1 − σ4)

σ2
(92)

rσ2 > −α2
1 (93)

Therefore, B is equal to

B =
1

θ̂β2

e

[

−
µ2θ̂2e

4(r − 2α1 − σ2)
+

cµθ̂e
2(r − α1)

−
c2

4r
+

K

r

]

(94)

If the following three conditions hold, then the firm never innovates: First, it has to hold that Ve−V2+I > 0

for θ → ∞. Second, Ve − V2 + I should be decreasing in θ. The first condition holds when µ2

4(r−2α1−σ2) −
γ2

4(r−2α2−σ2) > 0. The second condition requires that

2

[

µ2

4(r − 2α1 − σ2)
−

γ2

4(r − 2α2 − σ2)

]

θ −
cµ

2(r − α1)
= 0 (95)

θmin = (96)

and
[

µ2

4(r−2α1−σ2) −
γ2

4(r−2α2−σ2)

]

θ2 − cµθ
2(r−α1)

+ I + c2

4r has to be positive at θmin. Third,

Bθβ2 −
2K

r(2 − β4)

(

θ

θ̂2

)β4

> 0. (97)

V2(θ) =
γ2θ2

4(r − 2α2 − σ2)
−

K

r
+

(

θ

θ̂2

)β4 K

r

(

2

2− β4

)

. (98)

We want to show that Ve > V2 − I.

Sufficient condition for θ∗ = ∞ are: γ < µ, α2 < α1 and c = 0.

A.3 Proof of Proposition 3

xxxShowed already but still have to type in latex.xxx

A.4 Proof of Proposition 4

xxxShowed already but still have to type in latex.xxx
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