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Abstract

We develop a theory for stochastic control problems which, in vari-
ous ways, are time inconsistent in the sense that they do not admit a
Bellman optimality principle. We attach these problems by viewing them
within a game theoretic framework, and we look for Nash subgame per-
fect equilibrium points. For a general controlled Markov process and a
fairly general objective functional we derive an extension of the standard
Hamilton-Jacobi-Bellman equation, in the form of a system of non-linear
equations, for the determination for the equilibrium strategy as well as
the equilibrium value function. All known examples of time inconsistency
in the literature are easily seen to be special cases of the present theory.
We also prove that for every time inconsistent problem, there exists an
associated time consistent problem such that the optimal control and the
optimal value function for the consistent problem coincides with the equi-
librium control and value function respectively for the time inconsistent
problem. We also study some concrete examples.
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1 Introduction

In a standard continuous time stochastic optimal control problem the object is
that of maximizing (or minimizing) a functional of the form

T
E / C (s, Xs,us)ds + F(Xr)
0

where X is some controlled Markov process, us is the control applied at time
s, and F, C are given functions. A typical example is when X is a controlled
scalar SDE of the form

dX; = (Xt ug)dt + o (X, ug)dWr,

with some initial condition Xg = x¢. Later on in the paper we will allow for
more general dynamics than those of an SDE, but in this informal section we
restrict ourselves for simplicity to the SDE case.

1.1 Dynamic programming and time consistency

A standard way of attacking a problem like the one above is by using Dynamic
Programming (henceforth DynP). We restrict ourselves to control laws, i.e.,
the control at time s, given that X, = y, is of the form u(s,y) where the control
law u is a deterministic function. We then embed the problem above in a family
of problems indexed by the initial point. More precisely we consider, for every
(t,x), the problem P; , of maximizing

T
Ei . / C (s, Xs,us)ds+ F(Xr)
t

given the initial condition X; = x. Denoting the optimal control law for P; , by
u; (s, Xs) and the corresponding optimal value function by V (¢, x) we see that
the original problem corresponds to the problem Pg ., .

We note that ex ante the optimal control law uy, (s, Xs) for the problem
Py must be indexed by the initial point (¢, z). However, problems of the kind
described above turn out to be time consistent in the sense that we have the
Bellman optimality principle, which roughly says that the optimal control
is independent of the initial point. More precisely: if a control law is optimal
on the full time interval [0, 7], then it is also optimal for any subinterval [¢, T].
Given the Bellman principle, it is easy to informally derive the Hamilton-Jacobi-
Bellman (henceforth HIJB) equation

2
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for the determination of V. One can (with considerable effort) show rigorously
that, given enough regularity, the optimal value function will indeed satisfy the



HJB equation. On can also (quite easily) prove a verification theorem which
says that if V is a solution of the HJB equation, then V is indeed the optimal
value function for the control problem, and the optimal control law is given by
the maximizing u in the HJB equation.

We end this section by listing some important points concerning time con-
sistency.

Remark 1.1 The main reasons for the time consistency of the problem above
are as follows.

o The integral term C (s, Xs,us) in the problem Py, is allowed to depend
on s, Xs and us. It is not allowed to depend on the initial point (t,x).

o The terminal evaluation term is allowed to be of the form Ey , [F(X7)], i.e
the expected value of a non-linear function of the terminal value X. Time
consistency is then a relatively simple consequence of the law of iterated
expectations. We are not allowed to have a term of the form G(E, ; [X1]),
which is a non-linear function of the expected value.

e We are not allowed to let the terminal evaluation function F depend on
the initial point (t,x).

1.2 Three disturbing examples

We will now consider three seemingly simple examples from financial economics,
where time consistency fail to hold. In all these cases we consider a standard
Black-Scholes model for an underlying stock price S, as well as a bank account
B with short rate r.

dSt = OéStdt + O'Stth,
dBt = ’I“Btdt.
We consider a self financing portfolio based on S and B where u; is the number

of dollars invested in the risky asset S, and c¢ is the consumption rate at time ¢.
Denoting the market value process of this portfolio by X, we have

dX = [rXe + (o — r)up — ¢]dt + oudWry,

and we now consider three indexed families of optimization problems. In all
cases the (naive) objective is to maximize the objective functional J(t,x,u),
where (t, ) is the initial point and u is the control law.

1. Hyperbolic discounting

J(t,z,u) =FE

t,x

T
/t (s — D)h(ea)dt + o(T — 1) F(Xr)

In this problem h is the local utility of consumption, F is the utility
of terminal wealth, and ¢ is the discounting function. This problem



differs from a standard problem by the fact that the initial point in time
t enters in the integral (see Remark 1.1). Obviously; if ¢ is exponential
s0 (s —t) = e~ then we can factor out e* and convert the problem
into a standard problem with objective functional

J(t,xz,u)=F

t,x

T
/ e %h(cs)dt + e T F(X7)
t

One can show, however, that every choice of the discounting function
o, apart from the the exponential, case, will lead to a time inconsistent
problem. More precisely, the Bellman optimality principle will not hold.

2. Mean variance utility
J(t,z,u) = B, , [X7] - %Varm (X7)

This case is a continuous time version of a standard Markowitz investment
problem where we want to maximize utility of final wealth. The utility of
final wealth is basically linear in wealth, as given by the term E, , [X7],
but we penalize the risk by the conditional variance 3Var;, (Xr). This
looks innocent enough, but we recall the elementary formula

Var[X] = E[X?] — E*[X].

Now, in a standard time consistent problem we are allowed to have terms
like F, , [F(Xr)] in the objective functional, i.e. we are allowed to have
the expected value of a non-linear function of terminal wealth. In the
present case, however we have the term (B, [X ])2 This is not an ex-
pected value of a non-linear function of terminal wealth, but instead a
non-linear function of the expected value of terminal wealth, and we thus
have a time inconsistent problem (see Remark 1.1).

3. Endogenous habit formation
J(t,z,u) = E, , [In (X7 —x+ ()], >0

In this particular example we basically want to maximize log utility of
terminal wealth. In a standard problem we would have the objective
E, . [In (X7 —d)] where d > 0 is the lowest acceptable level of terminal
wealth. In our problem, however, the lowest acceptable level of terminal
wealth is given by z — 3 and it thus depends on your wealth X; = z at time
t. This again leads to a time inconsistent problem. (We remark in passing
that there are other examples of endogenous habit formation which are
indeed time consistent.)

1.3 Approaches to handle time inconsistency

In all the three examples of the previous subsection we are faced with a time
inconsistent family of problems, in the sense that if for some fixed initial point



(t,z) we determine the control law @ which maximizes J(t,x,u), then at some
later point (s, X;) the control law @ will no longer be optimal for the functional
J(s, Xs,u). Tt is thus conceptually unclear what we mean by “optimality” and
even more unclear what we mean by “an optimal control law”, so our first task
is to specify more precisely exactly which problem we are trying to solve. There
are then at least three different ways of handling a family of time inconsistent
problems, like the ones above

e We dismiss the entire problem as being silly.

e We fix one initial point, like for example (0, z¢), and then try to find the
control law @t which maximizes J(0, zg, u). We then simply disregard the
fact that at a later points in time such as (s, X;) the control law @ will
not be optimal for the functional J(s, X, u). In the economics literature,
this is known as pre-commitment.

e We take the time inconsistency seriously and formulate the problem in
game theoretic terms.

All of the three strategies above may in different situations be perfectly
reasonable, but in the present paper we choose the last one. The basic idea is
then that when we decide on a control action at time ¢ we should explicitly take
into account that at future times we will have a different objective functional
or, in more loose terms, “our tastes are changing over time”. We can then view
the entire problem as a non-cooperative game, with one player for each time ¢,
where player ¢ can be viewed as the future incarnation of ourselves (or rather
of our preferences) at time ¢. Given this point of view, it is natural to look for
Nash equilibria for the game, and this is exactly our approach.

In continuous time it is far from trivial to formulate this intuitive idea in
precise terms. We will do this in the main text below but a rough picture of the
game is as follows.

e We consider a game with one player at each point ¢ in time. This player is
referred to as “player t”. You may think of player ¢ as a future incarnation
of yourself, but conceptually it may be easier to think of the game as being
played by a continuum of completely different individuals.

e Depending on ¢t and on the position = in space, player ¢ will choose a
control action. This action is denoted by u(t,x), so the strategy chosen
by player ¢ is given by the mapping z — u(t, x).

e A control law u can thus be viewed as a complete description of the chosen
strategies of all players in the game.

e The reward to player ¢ is given by the functional J(¢,z,u). We note that
in the three examples of the previous section it is clear that J(¢, z,u) does
not depend on the actions taken by any player s for s < ¢, so in fact J does
only depend on the restriction of the control law u to the time interval



[t,T]. Tt is also clear that this is really a game, since the reward to player
t does not only depend on the strategy chosen by himself, but also by the
strategies chosen by all players coming after him in time.

We can now loosely define the concept of a “Nash subgame perfect equilibrium
point” of the game. This is a control law 1 satisfying the following condition:

e Choose an arbitrary point ¢ in time.
e Suppose that every player s, for all s > ¢, will use the strategy u(s,-).

e Then the optimal choice for player ¢ is that he/she also uses the strategy
a(t,-).

The problem with this “definition” in continuous time is that, for example in a
diffusion framework without impulse controls, the individual player ¢t does not
really influence the outcome of the game at all. He/she only chooses the control
at the single point ¢, and since this is a time set of Lebesgue measure zero, the
control dynamics will not be influenced. For a proper definition we need some
sort of limiting argument, which is given in the main text below.

1.4 Previous literature

The game theoretic approach to time inconsistency using Nash equilibrium
points as above has a long history starting with [13] where a deterministic Ram-
say problem is studied. Further work along this line in continuous and discrete
time is provided in [6], [8], [10], [11], and [14].

Recently there has been renewed interest in these problems. In the interest-
ing, and mathematically very advanced, papers [4] and [5], the authors consider
optimal consumption and investment under hyperbolic discounting (Problem 1
in our list above) in deterministic and stochastic models from the above game
theoretic point of view. To our knowledge, these papers were the first to provide
a precise definition of the equilibrium concept in continuous time. The authors
derive, among other things, an extension of the HJB equation to a system of
PDEs including an integral term, and they also provide a rigorous verification
theorem. They also, in a tour de force, derive an explicit solution for the case
when the discounting function is a weighted sum of two exponential discount
functions. Our present paper is much inspired by these papers, in particular for
the definition of the equilibrium law.

In [1] the authors undertake a deep study of the mean variance problem
within a Wiener driven framework. This is basically Problem 2 in the list
above, but the authors also consider the case of multiple assets, as well as
the case of a hidden Markov process driving the parameters of the asset price
dynamics. The authors derive an extension of the Hamilton Jacobi Bellman
equation and manages, by a number of very clever ideas, to solve this equation
explicitly for the basic problem, and also for the above mentioned extensions.
The paper has two limitations: Firstly, from a mathematical perspective it is
somewhat heuristic, the equilibrium concept is never given a precise definition,



and no verification theorem is provided. Secondly, and more importantly, the
methodology depends heavily on the use of a “total variance formula”, which in
some sense (partially) replaces the iterated expectations formula in a standard
problem. This implies that the basic methodology cannot be extended beyond
the mean variance case. The paper is extremely thought provoking, and we have
benefited greatly from reading it.

The recent working paper [9] uses the theory of the present paper and
contains several interesting new applications. In [3] the author undertakes a
deep study of the mean variance problem within in a general semi martingale
framework.

1.5 Contributions of the present paper

The object of the present paper is to undertake a rigorous study of time incon-
sistent control problems in a reasonably general Markovian framework, and in
particular we do not want to tie ourselves down to a particular applied problem.
We have therefore chosen a setup of the following form.

e We consider a general controlled Markov process X, living on some
suitable space (details are given below). It is important to notice that
we do not make any structural assumptions whatsoever about X, and we
note that the setup obviously includes the case when X is determined by
a system of SDEs driven by a Wiener and a point process.

e We consider a functional of the form

T
J(t,z,u) = Bt o / C(z, X$u(XT))ds + F(z, X7) | +G (2, By o [X7]) .
t

We see that with the choice of functional above, time inconsistency enters at
several different points. Firstly we have the appearance of the present state
x in the local utility function C, as well as in the functions F' and G. As
a consequence of this, the utility function changes as the state changes. At
time ¢ we have, for example, the utility function F'(X;, X7) which we want
to maximize as a function of X, but at a later time s we have the utility
function F(Xg, X7). This obviously leads to time inconsistency. Secondly, in
the term G (z, B}, [X}]) we have, even forgetting about the appearance of z,
a non linear function G acting on the conditional expectation, again leading to
time inconsistency.

Note that, for notational simplicity we have not explicitly included de-
pendence on running time ¢. This can always be done by letting running time
be one component of the state process X, so the setup above also allows for
expressions like F(t,z, X) etc, thus allowing (among many other things) for
hyperbolic discounting.

This setup is studied in some detail in continuous as well as in discrete
time. The discrete time results are parallel to those in continuous time, and our
main results in continuous time are as follows.



e We provide a precise definition of the Nash equlibrium concept. (This is
done along the lines of [4] and [5]).

e We derive an extension of the standard Hamilton-Jacobi-Bellman equa-
tion to a non standard system of equations for the determination of the
equilibrium value function V.

e We prove a verification theorem, showing that the solution of the extended
HJB system is indeed the equilibrium value function, and that the equi-
librium strategy is given by the optimizer in the equation system.

e We prove that to every time inconsistent problem of the form above, there
exists an associated standard, time consistent, control problem with
the following properties:

— The optimal value function for the standard problem coincides with
the equilibrium value function for the time inconsistent problem.

— The optimal control law for the standard problem coincides with the
equilibrium startegy for the time inconsistent problem.

e We solve some specific test examples.

Our framework and results extends the existing theory considerably. As
we noted above, hyperbolic discounting is included as a special case of the
theory. The mean variance example from above is of course also included. More
precisely it is easy to see that it corresponds to the case when

2l v
0:03 F(‘Tay):y7§y27 G(I,y):§y2
We thus extend the existing literature by allowing for a considerably more gen-
eral utility functional, and a completely general Markovian structure. The exis-
tence of the associated equivalent standard control problem is to our knowledge
a completely new result.

1.6 Structure of the paper

Since the equilibrium concept in continuous time is a very delicate one, we start
by studying a discrete time version of our problem in Section 2. In discrete
time there are no conceptual problems with the equilibrium concept, but the
arguments are sometimes quite delicate, the expressions are rather complicated,
and great care has to be taken. It is in fact in this section that the main work
is done. In Section 5 we exemplify the theory by studying the special case of
non exponential discounting.

In Section 7 we study the continuous time problem by taking formal limits
for a discretized problem, and using the results of the Section 2. This leads to
an extension of the standard HJB equation to a system of equations with an
embedded static optimization problem. The limiting procedure described above
is done in an informal manner and it is largely heuristic, so in order to prove

10



that the derived extension of the HJB equation is indeed the correct one we also
provide a rigorous proof of a verification theorem. In Section 8 we prove the
existence of the associated standard control problem, and in Sections 9-11 we
study several examples.

2 Discrete time

Since the theory is conceptually much easier in discrete time than in continuous
time, we start by presenting the discrete time version.

2.1 Setup

We consider a given controlled Markov process X, evolving on a measurable
state space {X,Gx }, with controls taking values in a measurable control space
{U,Gr}. The action is in discrete time, indexed by the set N of natural numbers.
The intuitive idea is that if X,, = x, then we can choose a control u,, € U, and
this control will affect the transition probabilities from X, to X,,+1. This idea
is formalized by specifying a family of transition probabilities,

{pp(dz;z) :ne N,z € X,uc€lU}.

For every fixed n € N, z € X and u € U, we assume that p(-;z) is a proba-
bility measure on X, and for each A € Gx, the probability p¥(A;x) is jointly
measurable in (z,u). The interpretation of this is that p¥(dz;x) is the proba-
bility distribution of X, 11, given that X,, = z, and that we at time n apply the
control u, i.e.,

pa(dz;x) = P(Xpg1 € dz| X, = 2 up =u).

To obtain a Markov structure, we restrict the controls to be feedback
control laws, i.e. i.e. at time n, the control u,, is allowed to depend on time n
and state X,,. We can thus write

Up = un(Xn)a

where the mapping u : N x X — U is measurable. Note the boldface notation
for the mapping u. In order to distinguish between functions and function
values, we will always denote a control law (i.e. a mapping) by using boldface,
like u, whereas a possible value of the mapping will be denoted without boldface,
like, u € U.

Given the family of transition probabilities we may define a corresponding
family of operators, operating on function sequences.

Definition 2.1 A function sequence is a mapping f : N x X — R, where
we use the notation (n,z) — f(x).

11



e For each uw € U, the operator P, acting on the set of integrable function
sequences, is defined by

@), / Frir ()P (dz, ).

The corresponding discrete time “infinitesimal” operator A" is defined by
A" =P" -1,
where I is the identity operator.

e For each control law u the operator P" is defined by

Puf), / Fs1 (2)p2) (dz, ),

and A" is defined correspondingly as

A" =P" -1,

In more probabilistic terms we have the interpretation.

(PUf), (@) = E [fro1(Xn )| X = @, un = 1],

and A™ is the discrete time version of the continuous time infinitesimal operator.
We immediately have the following result.

Proposition 2.1 Consider a real valued function sequence {f,(z)}, and a con-
trol law u. The process fn(X2) is then a martingale under the measure induced
by u if and only if the sequence {f,} satisfies the equation

(A%f) (z)=0, n=0,1,...,T7 1.

Proof. Obvious from the definition of A". |

It is clear that for a fixed initial point (n,z) and a fixed control law u we
may in the obvious way define a Markov process denoted by X™*" where for
notational simplicity we often drop the upper index n,x and use the notation
XY, The corresponding expectation operator is denoted by Ej . [], and we
often drop the upper index u, and instead use the notation E, , [-]. A typical
example of an expectation will thus have the form E, , [F(X})] for some real
valued function F' and some point in time k.

12



2.2 Basic problem formulation

For a fixed (n,z) € N x X, a fixed control law u, and a fixed time horizon T,
we consider the functional

T—1
Jn(x,u) = En,x Z C(x7XI?7uk(XI?)) + F(.Z‘,X%) + G($7En,w [X%]) ’ (1)
k=n

Obviously, the functional J depends only on the restriction of the control law
u to the time set k =n,n+1,...,7T — 1.

The intuitive idea is that we are standing at (n,z) and that we would like
to choose a control law u which maximizes J. We can thus define an indexed
family of problems {P,, .} by

Pra max J, (z,u),
u

where maz is shorthand for the imperative “maximize!”. The complicating
factor here is that the family {P, .} is time inconsistent in the sense that if G
is optimal for P, ,, then the restriction of @ to the time set k,k+1,...,T (for
k > n) is not necessarily optimal for the problem Py, xp. There are two reasons
for this time inconsistency:

e The shape of the utility functional depends explicitly on the initial position
x in space, as can be seen in the appearance of x in the expression F(z, Xr)
and similarly for the other terms. In other words, as the X process moves
around, our utility function changes, so at time ¢ this part of the utility
function will have the form F(X;, Xr).

For a standard time consistent control problem we are allowed to have
expressions like E,, , [G(Xr7)] in the utility function, i.e. we are allowed to
have the expected value of a non linear function G of the future process
value. Time consistency is then a relatively simple consequence of the
law of iterated expectations. In our problem above, however, we have an
expression of the form G (E,, , [X}]), which is not the expectation of a non
linear function, but a nonlinear function of the expected value. We thus
do not have access to iterated expectations, so the problem becomes time
inconsistent. On top of this we also have the appearance of the present
state x in the expression G (z, E, 5 [X7]).

The moral of all this is that we have a family of time inconsistent problems
or, alternatively, we have time inconsistent preferences. If we at some point
(n,x) decide on a feedback law @ which is optimal from the point of view of
(n,z) then as time goes by, we will no longer consider @ to be optimal. To
handle this problem we will, as outlined above, take a game theoretic approach
and we now go on the describe this in some detail.

13



2.3 The game theoretic formulation

The idea, which appears already in [13], is to view the setup above in game
theoretic terms. More precisely we view it as a non-cooperative game where
we have one player at each point n in time. We refer to this player as “player
number n” and the rule is that player number n can only choose the control
Uy. One interpretation is that these players are different future incarnations of
yourself (or rather incarnations of your future preferences), but conceptually it
is perhaps easier to think of it as one separate player at each n.

Given the data (n, ), player number n would, in principle, like to maximize
Jn(z,u) over the class of feedback controls u, but since he can only choose the
control u,, this is not possible. Instead of looking for “optimal” feedback laws,
we take the game theoretic point of view and study so called subgame perfect
Nash equilibrium strategies. The formal definition is as follows.

Definition 2.2 We consider a fixed control law & and make the following con-
struction.

1. Fiz an arbitrary point (n,z) where n < T, and choose an arbitrary control
value u € U.

2. Now define the control law @ on the time set n,n+1,...,T —1 by setting,
foranyy e X,

_ o [ ag(y), for k=n+1,...,T-1,
uk(y)_{ u, for k=n.

We say that 0 is a subgame perfect Nash equilibrium strategy if, for every
fized (n,x), the following condition hold

sup Jy,(z,0) = J,(x,0).
ueU
If an equlibrium control 0 exists, we define the equilibrium value function
V by
Vi(z) = Jp(z,0).

In more pedestrian terms this means that if player number n knows that
all players coming after him will use the control @, then it is optimal for player
number n also to use 0.

Remark 2.1 An equivalent, and perhaps more concrete, way of describing an
equilibrium strategy is as follows.

o The equilibrium control r_1(x) is obtained by letting player T—1 optimize
Jr_1(z,u) over ur_y for all x € X. This is a standard optimization
problem without any game theoretic components.

o The equilibrium control Ur_o is obtained by letting player T — 2 choose
up_o to optimize Jy_o, given the knowledge that player number T — 1 will
use Up_1.

14



e Proceed recursively by induction.

Obviously; for a standard time consistent control problem, the game the-
oretic aspect becomes trivial and the equilibrium control law coincides with
the standard (time consistent) optimal law. The equilibrium value function V'
will coincide with the optimal value function and, using dynamic programming
arguments, V' is seen to satisfy a standard Bellman equation.

The main result of the present paper is that in the time inconsistent case,
the equilibrium value function V' will satisfy a system of non linear equations.
This system of equations extend the standard Bellman equation, and for a time
consistent problem they reduce to the Bellman equation.

2.4 The extended Bellman equation

In this section we assume that there exists an equilibrium control law @ (which
may not be unique) and we consider the corresponding equilibrium value func-
tion V defined above. The goal of this section is to derive an system of equations,
extending the standard Bellman equation, for the determination of V. This will
be done in the following two steps:

e For an arbitrarily chosen control law u, we will derive a recursive equation

for J,(x,u).

e We will then fix (n,z) and consider two control laws. The first one is
the equilibrium law @, and the other one is the law u where we choose
u = u,(z) arbitrarily, but follow the law @ for all k with k = n+1,...T-1.
The trivial observation that

sup Jp,(z,u) = J,(x,0) = V,(x),
ueU

will finally give us the extension of the Bellman equation.

The reader with experience from dynamic programming (DynP) will recoginize
that the general program above is in fact more or less the same as for stan-
dard (time consistent) DynP. However; in the present time inconsistent setting,
the derivation of the recursion in the first step is much more tricky than in
the corresponding step from DynP, and it also requires some completely new
constructions.

2.4.1 The recursion for J,(z,u)

In order to derive the recursion for J,,(x, u) we consider an arbitrary initial point
(n,x), and we consider an arbitrarily chosen control law u. The value taken by
u at (n,x) will play a special role in the sequel, and for ease of reading we will
use the notation u,(z) = w.

We now go on to derive a recursion between J,, and J,1. This is conceptu-
ally rather delicate, and sometimes a bit messy. In order to increase readability
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we therefore carry out the derivation only for the case when the objective func-
tional does not contain the sum Zg:_i C(z, X2, up(X})) in (1), and thus has
has the simpler form

Jn(xv u) = En,:x: [F(.%‘,X%)] +G (337 En,:z: [X¥]) : (2)

We provide the result for the general case in Section 2.4.4. The derivation of
this is completely parallel to that of the simplified case.

We start by making the observation that X, 4; will only depend on x and
on the control value u,(z) = v motivating the notation X!, ;. The distribution
of X for £k > n 4+ 1 will, on the other hand depend on the control law u
(restricted to the interval [n, k — 1]) so for k > n + 1 we use the notation X}!.

We now go on to the recursion arguments. From the definition of J we
have

Jn+1(XrlLL+1a u) =FE, [F(X;f-;-bX;)} +G (X:f+1,En+1 [Xil“l]) ) (3)

where for simplicity of notation we write E, 1 [] instead of Eyy1 xu, []. We
now make the following definitions which will play a central role in the sequel.

Definition 2.3 For any control law u, we define the function sequences {f*}
and {gr}, where f¥* g : X x X — R by.

f,l;(-'ﬂ,y) = En,a: [F(an;)]a

We also introduce the notation

(@) = fil(,y).

The difference between f¥ and fY, is that we view f3 as a function of the
two variables x and y, whereas fY is, for a fixed y, viewed as a function of the
single variable z.

From the definitions above it is obvious that, for any fixed y, the processes
fY(XH) and gn(X)Y) are martingales under the measure generated by u. We
thus have the following result.

Lemma 2.1 For every fized control law u and every fized choice of y € X, the
function sequence {fY} satisifes the recursion

(A%f9%) (z) = 0, n=01,....T—1.
fr¥(x) = F(y,z).

The sequence {g*} satisifes the recursion

(Augu)n(gc) = 0, n=0,1,...,T—1.

gr(z) = =z
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Going back to (3) we note that, from the Markovian structure and the
definitions above, we have

Enia [F(X’}LLJrl’X%)} = f#ﬂ(X;fH»X::H)
E 1 [X7] = gni1(X54q)

We can now write (3) as

Jn+1(X:f+1a u) = frlll+1(X;f+1vX:f+1) +G (X;fﬂagrl:ﬂ(X;fH)) .

Taking expectations gives us

En,w [Jn-i-l(X:LL—i-lv u)} = En,:E [fvlzl—i-l(X:LL—i-le:—&-l)] +En,z [G (Xﬁ+1793+1(Xg+1))} )
and, going back to the definition of .J,,(x,u), we can write this as

En,m I:Jn—‘rl(X:_i,_l,u):I = Jn(:p,u)
+ Ene [f#+1(XZ+1’X#+1)] — By [F(z, X7)]
+ Ens [G (X:;Jrlv 93+1(X:;+1))] -G (z, Engs [(XT]).
At this point it may seem natural to use the identities E,, , [F(z, X2)] = f2(z, z)

and E,, ; [X3] = gn(z), but for various reasons this is not a good idea. Instead
we note that

En s [F(LX¥)] =FEne [En+1 [F(z»X;)H =FEne [fk‘+1(XZf+1,$)] >

and that

En [X;] =Eng [En-t-l [Xﬁ] =Ena [95+1(X77:+1)] .
Substituting these identities into the recursion above, we can now collect the
findings so far.

Lemma 2.2 The value function J satisfies the following recursion.

Jn(z,u) = By [Jos1 (X, u)]
- {Enm [fr?ﬂ(XﬁHaX;fH)] —Eng [frl;ﬂ(X;vaf)]}
= {Bns [G (X040 901(X000))] = G (2, Bne (900 (X000)]) } -

2.4.2 The recursion for V,(z)

We will now derive the fundamental equation for the determination of the equlib-
rium function V,(z). In order to do this we assume that there exists an equi-
librium control . We then fix an arbitrarily chosen initial point (n,z) and
consider two strategies (control laws).

1. The first control law is simply the equilibrium law 1.
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2. The second control law u is slightly more complicated. We choose an
arbitrary point u € U and then defined the control law u as follows

() = u, for k =mn,
RY) = ay(y), fork=n+1,..., T —1.

We now compare the objective function J, for these two control laws. Firstly,
and by definition, we have

Jn(z, 1) = Vi (2),

where V is the equilibrium value function defined earlier. Secondly, and also by
definition, we have
Jn(z,0) < Jp(x,0),

for all choices of u € U. We thus have the inequality
In(z,0) < Vi (2),
for all u € U, with equality if u = @, (z). We thus have the basic relation

sup J, (z,u) = V,(z). (4)
ueU

We now make a small variation of Definition 3.

Definition 2.4 We define the function sequences {fn}:=o, and {gn}gzo, where
fni XxX >R, and g, : X — R by.

fal@y) = Bug[F(y,XF)],
gn(xz) = Eng [X%] .
We also introduce the notation
fi(@) = fa(z,y),
where we view f¥ as a function of x with y as a fized parameter.

Using Lemma 2.2, the basic relation (4) now reads

SZB {Bna [Jn1 (X, )] = Vi(z)

- (Enz [ 1?+1(quf+17X77f+1)] —Eng [ 7?+1(Xﬁ+1733)])

- (Enac [G (X;f+1,g}1‘+1(X:j+1))] -G (%En,m [93+1(X::+1)]))} =0.

W now observe that, since the control law u conicides with the equilibrium law
won [n+ 1,7 — 1], we have the following equalities

Jn+1(X;f+1vu) = Van (XZ+1) )
f;+1(X::+1a17) = fn+1(Xrl:+1ax)7
971:+1(Xﬁ+1) = gn+1(Xﬁ+1)-
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We can thus write the recursion as

sup {En,ac [Vn-‘rl (X:LL.H)] — Va(x)
ueUu
- (En,z [fnJrl(X:erngJrl)] - En,x [fn+1(Xﬁ+17x)])

- (En,w [G (X'::-‘rla g7z+1(X77:+1))] -G (l‘, E”J«' [g"'i‘l(XTIlL-l‘l)]))} =0.
The first line in this equation can be rewritten as
Epa [Var1 (Xi)] = Valz) = (A"V),, (2).
The second line can be written as
Emw [fn+ n+1’ n+1 } n fd [fn+1<X71:+17x)]

Engs [fn—H n+1aX71LL+1 } In(z ( n,x [fn+1(X::+1ax) - fn(xvx)])
= (A"f), (z,z) — (A“f7), (2).

To avoid misunderstandings: The first term (A" f), (x, ), can be viewed
as the operator A" operating on the function sequence {h}, defined by h,(z) =
fn(z,x). In the second term, A™ is operating on the function sequence fZ(-)
where the upper index x is viewed as a fixed parameter.

We rewrite the third line of the recursion as

En e [G (qufﬂvgnﬂ(X:fH))} -G (557 Enq [9n+1(X;f+1)])
= ETL,:E [G (X:+17gn+1(X:f+l))] - G(xﬂgﬂ(x))
—{G (@ B [9n11(X71)]) = G, gn(@)) }

In order to simplify this we need to introduce some new notation.

Definition 2.5 The function sequence {G ¢ g}, and, for a fired z € X, the
mapping G* : X — R are defined by

(Gog)(y) = Gy, gk(y)),
G*(y) = G(zv).

With this notation we can write

By [G (XS+1vgn+1(XZ+1))} -G (J:, En [gn-&-l(X:f-&-l)])
=A"(Goyg), (@) —{G"(P"gn(z)) — G*(gn(z))}

We now introduce the last piece of new notation.

Definition 2.6 With notation as above we define the function sequence {HZG}k
by
{H;G}, (2) = G*(PVga(x)) — G*(ga(2)).
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Finally, we may state the main result for discrete time models.

Theorem 2.1 Consider a functional of the form (2), and assume that an equi-
librium control law 0 exists. Then the equilibrium value function V' satisfies the
equation.

sup {(A"V), (z) — (A"f), (z,2) + (A“f7),, (z)

uelU
— A" (Gog), (z) + HyGn( } (5)
Vr(x) = F(z,z) + G(x,x), (6)

where the supremum above is realized by uw = 4, (x). Furthermore, the following
hold.

1. For every fized y € X the function sequence f¥(x) is determined by the

TECUrsion
A%f¥(z) = 0, n=0,...,T—1, (7)
(@) = F(y,), (8)

and fn(x,x) is given by
fo(z,2) = f7 ().
2. The function sequence gy (x) is determined by the recursion.

A, (z) = 0, n=0,...,T—1, (9)
gr(z) = =z, (10)

8. The probabilistic interpretations of f and g are, as before, given by
fale,y) = BEng [F(y, X3)],
gn(x) = Eng [X{ﬁ] .

4. In the recursions above, the G occurring in the expression A% is the equi-
librium control law.

We now have some comments on this result.

e The first point to notice is that we have a system of recursion equation
(5)-(10) for the simultaneous determination of V', f and g.

e In the case when F(xz,y) does not depend upon z, and there is no G term,
the problem trivializes to a standard time consistent problem. The terms
(A" f), (z,xz)+ (A" f*), (z) in the V-equation (5) cancel, and the system
reduces to the standard Bellman equation

(Auv)n (l‘) = 0,
Vr(z) = F(z).
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e In order to solve the V-equation (5) we need to know f and g but these are
determined by the equilibrium control law @, which in turn is determined
by the sup-part of (5).

e We can view the system as a fixed point problem, where the equilibrium
control law 1 solves an equation of the form M (@) = t. The mapping M
is defined by the following procedure.

— Start with a control u.

— Generate the functions f and g by the recursions

Avfl(a) = O
Avg,(z) = 0,

and the obvious terminal conditions.

— Now plug these choices of f and ¢ into the V' equation and solve it
for V. The control law which realizes the sup-part in (5) is denoted
by M(u). The optimal control law is determined by the fixed point
problem M (1) = a.

This fixed point property is rather expected since we are looking for a
Nash equilibrium point, and it is well known that such a point is typically
determined as fixed points of a mapping. We also note that we can view
the system as a fixed point problem for f and g.

e In the present discrete time setting, the situation is, however, simpler
than the fixed point argument above may lead us to believe. In fact;
looking closer at the recursions, it turns out that the system for V, f, and
g is a formalization of the recursive strategy outlined in Remark 2.1.

2.4.3 Explicit time dependence

In many examples, the objective functional exhibits explicit time dependence,
in the sense that the functions F' and G depend explicitly on running time n,
so J has the form

Jn(x,u) = By, ; [Fo(z, X7)] + Gn (z, B, 5 [X7)]) - (11)

This case is in fact included in the theory developed above by considering the
extended state process (n, X, ), where n has trivial dynamics. Since problems of
this form are quite common we nevertheless provide the result for easy reference.
The novelty for this case is that the function sequence

fU(w) = Eng [F (y, X2)] -

will be replaced by the sequence

fvlzcy(x) = En,z [Fk (va%)] .
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Proposition 2.2 For a functional of the form (11), the following hold.

1. The equilibrium value function V satisfies the equation.

sup {(A"V),, () = (A" [),, (z,2) + (A" f"7),, (2)

uel
— A" (Gog), (2) + HIG,(2)} = (12)
Vr(z) = Fr(z,z) + Gr(x,x), (13)

where the supremum above is realized by u = 4, (x).

2. For every fixed k = 0,1,...,T and every y € X the function sequence
fru(z) is determined by the recursion

A%fM(z)y = 0, n=0,...,T—1, (14)
(@) = Fiyx), (15)
and fon(x,x) is defined by
fan ;) = [ ().
3. The function sequence gy (x) is determined by the recursion.
Abg,(z) = 0, n=0,....,T—1, (16)
gr(z) = (17)
4. The function sequence (G ¢ g) is defined by
(Gog), (x) = Gn(z, gn(2))
5. The term Hy G (z) is defined by
HyGn(2) = Gn (2, PYgn(2)) — Gn(2, gn(2))
6. The probabilistic interpretations of f and g are given by
fak(@,y) = Ena [Fr (v, X7)], (18)
gn(z) = Eno[X7]. (19)

7. In the expressions above, the 0 occurring in the expression A% is the
equilibrium control law.

Remark 2.2 Note that for every fized k = 0,1,2,...,T the function fni(x,y)
is defined for allm =0,1,2,...,T, not only for n <k.
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2.4.4 The general case
We now consider the most general functional form, where J is given by

T—1
In(@,0) = Ep o Z Chi (2, X3, up (X)) + Fo(2, X7) | + G (2, Ene [XT7])
k=n
(20)
The arguments for the C' terms in the sum above are very similar to the previous
arguments for the F' term. It is thus natural to introduce an indexed function
sequence defined by

C:,’m’y(x) =B [Ck,m (va;rin U, (XTL:,)):I

where, as usual, G denotes the equilibrium law. We then have the following
result.

Theorem 2.2 Consider a functional of the form (20), and assume that an
equilibrium control law O exists. Then the the equilibrium value function V
satisfies the equation.

T-1 T—1
sug{(A“V)n (@) + Con(@,,u) = Y (A pn(z,2)+ D (A%"™),(x)
u€ m=n+1 m=n+1

—(AYf),, (x,2) + (A“f™), () —A“ (Goyg), () + H;‘Gn(x)} =0,

Vr(x) = Fr(z,z) + Gr(z, x),

where the supremum above is realized by u = U, (x). Furthermore, the following
hold.

1. For every fizxed k = 0,1,...,T and every y € X the function sequence
*y () is determined by the recursion

A" fRY (2) (21)
() = Fily,2), (22)

and fon(x,x) is defined by

|
o
S

|
o
N

|
l_l

fon(@,2) = f1*(2).
2. The function sequence g,(x) is determined by the recursion.

A%, (z) = 0, n=0,...,T -1,

gr(z) = =z,
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8. Foreveryk,m=0,1,...,T, withk <m, andy € X the function sequence
ckmy(z) is defined by

(AUckmY) () = 0, 0<n<m-—1,

Clycr;m,y(x) = Ok,m(ya xz, ﬁm(I))
and ¢y, (v, ) is defined by

Con (1, 2) = ;™ ().

4. The probabilistic interpretations of f, g and ¢ are given by

fﬁy(x) = En,m [Fk (ya X’%)] ) (23)
gn(x) = Eng [X%’] . (24)
My (r) = En s [Ck,m (y7X7‘;‘1, U, (X};l))] (25)

5. In the expressions above, 0 always denotes the equilibrium control law.

2.4.5 Infinite horizon

In the arguments above we have always assumed that the time horizon T is
finite. In many applications, however, it is natural to consider a problem with
infinite horizon. Let us thus consider a value functional of the form

Jn(z7u) :En@ ZCTLJC (zaX]?7uk(Xllfl))‘| N (26)
k=n
Using exactly the same arguments as above, we then have the following result.

Proposition 2.3 Consider a functional of the form (26), and assume that an
equilibrium control law 0 exists. Then the the corresponding equilibrium value
function V' satisfies the equation.

sup {(A“V)n () + Cpn(z, z,u) — Z (AYC™) (2, ) + Z (Aucnmz)n(x)} —0
uel m=n+1 m=n+1

where the supremum above is realized by u = 0, (x). The function c&™Y(x) is
as usual defined by (25).

For the infinite horizon case, existence and uniqueness of an equilibrium control
is highly nontrivial. See Section 4 for more details.
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2.4.6 A scaling result

In this section we derive a small scaling result, which is sometimes quite useful.
Consider the objective functional (20) above and denote, as usual, the equilib-
rium control and value function by & and V respectively. Let ¢ : R — R be a
fixed real valued function and consider a new objective functional J¥, defined
by,

JZ(z,u) = p(z)Jn(z,u), n=0,1,...,T

and denote the corresponding equilibrium control and value function by G1¥ and
V¢ respectively. Since player No n is (loosely speaking) trying to maximize
J#(x,u) over u,, and p(z) is just a scaling factor which is not affected by u,
the following result is intuitively obvious.

Proposition 2.4 With notation as above we have

Vie) = e(@)Va(z),

af(z) = Gy(x).

Proof. The result follows from an easy (but messy) induction argument. i

3 An equivalent time consistent problem

The object of the present section is to provide a surprising link between time
inconsistent and time consistent problems. To this end we go back to the general
extended HJB system of equations. The first part of this reads as

T-1 T-1
sup{(A"V),, () + Con (@, 2,u) = Yo (A un(z,z) + Y (AN (2)
u€ m=n+1 m=n+1

—(AYf),, (x,2) + (A“f™®), () —A“ (Gog), () + H;‘Gn(x)} =0,

Now consider the equilibrium control law 1. Using 1 we can then construct
f, g, and ¢ by solving the equations (23)-(25). We now define the function h by

T-1 T-1
ho(z,u) = Cop(@,z,u) = > (A"C)un(@,x)+ Y (A", (x)
m=n-+1 m=n-+1

— (A", (2 2) + (A7), () — A" (G o g),, (v) + HyGn(),

where it is important to notice that h does not involve the equilibrium value
function V. With this definition of h, the equation for V' above and its boundary
condition become

Zgg{(A"V)n(x)Jrhn(%u)} = 0,
V(T,z) = H(x),
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where H is defined by H(z) = F(z,x) + G(x,2). We now observe, simply by
inspection, that this is a standard HJB equation for the standard time consistent
optimal control problem to maximize

T
En,a: Z hk(Xk, uk) + H(XT) : (27)
k=n

We have thus proved the following result.

Proposition 3.1 For every time inconsistent problem in the present frame-
work there exists a standard, time consistent, optimal control problem with the
following properties.

o The optimal value function for the standard problem coincides with the
equilibrium value function for the time inconsistent problem.

e The optimal control for the standard problem coincides with the equilibrium
control for the time inconsistent problem.

e The objective functional for the standard problem is given by (27).

We immediately remark that Proposition 3.1 above is mostly of theoretical
interest, and of little “practical” value. The reason is of course that in order
to formulate the equivalent standard problem we need to know the equilibrium
control U. In our opinion it is, however, quite surprising.

Furthermore, Proposition 3.1 has modeling consequences for economics.
Suppose that you want to model consumer behavior. You have done this using
standard time consistent dynamic utility maximization and now you are con-
templating to introduce time inconsistent preferences to obtain a richer class of
consumer behavior. Proposition 3.1 then tells us that from the point of view
of revealed preferences, nothing is gained by introducing time inconsistent pref-
erences: Every kind of behavior that can be generated by time inconsistency
can also be generated by time consistent preferences. We immediately remark,
however, that even if a concrete model of time inconsistent preferences is, in
some sense, “natural”, the corresponding time consistent preferences may look
extremely “weird”.

4 Existence and uniqueness

So far we have not discussed existence and uniqueness of an equilibrium control,
and for these issues there is a marked difference between the case T' < co and
the case T' = oo.

For the case T' < oo, existence and uniqueness is not complicated. Theorem
2.2 does in fact give us a concrete backward recursion for the equilibrium value
function, starting at n = T. For a well posed problem, i.e. a problem where
the supremum is attained in the extended Bellman equation for n =T —1,T —
2,... the equilibrium control and the corresponding value function are thus

26



determined recursively. In principle it may of course happen that for some n
there is more than one global optimum in the extended Bellman equation, but
this is a non-generic situation in the sense that it is not structurally stable. We
thus conclude that for the case T' < oo we have generic existence and uniqueness
of the equilibrium control and value function.

The case T' = 0o is much more complicated. For this case we have a recur-
sion, namely the extended Bellman equation, but we have no natural boundary
condition. Existence is thus a highly non trivial issue, and we have so far not
been able to obtain any general results in this direction, so this is an object of
future research. Concerning uniqueness, the argument above for finite 7" will no
longer hold, and we conjecture that we may generically have multiple equilibria.
See [14] for a detailed study of the existence of multiple equilibria in a concrete
case.

5 Non exponential discounting

Problems with non exponential discounting constitute an important subclass of
the family of time inconsistent problems. To see how the general theory works
in this more concrete case we now consider a fairly general model class with
non-exponential discounting. As a special case we will then study the case of
hyperbolic discounting. The general model is specified as follows.

e We assume that the controlled Markov process X is time homogeneous.

e The value functional for player n is given by
T—1
Tn(@,0) = Epp | > @k = n) H(XP, ug(XE) + o(T = n)K(X7)| (28)
k=n

e In the expression above, the discounting function ¢, and the utility func-
tions H and K, are assumed to be given deterministic functions.

e Without loss of generality we assume that
¢(0) =1.
We note that if the discounting function ¢ has the form
ok)=6% k=0,1,2,...

then we have a standard time consistent control problem with infinite horizon.
The interesting case for us is thus the case when ¢ is not of exponential form.
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5.1 A general discount function

We see that, in the notation of Theorem 2.2 we have

Cri(y,z,u) = @k—n)H(z,u),
Fo(y,z) = o(T —n)K(z),

so for this model we have no y-variable. The extended Bellman equation for
this case is now easily seen to have the form

sup {(A"V)n () + H(z,u) + Z_: [Atey™ (x) — Atepy (2)] — A" fun () + A“fff(ﬂ?)} =0

m=n+1
where
(@) = p(m—k)Epy [H (X, 0n(X3))]
@) = am), A
fa(@) = (T —k)Ens [K (X3)],

We also recall that the operator A* only operates on lower case indices and the
variable inside the the parenthesis. In this setting it is natural to define h](x)
and k,(z) by

h(z) = Eno [H (XS 0n(X2)],
kn(z) = Eno [K(X})],
so we have
A™M@) = p(m—k)h7(z),

fa@) = @(T = k)kn(z).
With this notation we obtain
Avep™(x) = Ena e T(X00)] — (@)

= Ene [p(m —n)hi (X510)] — e(m —n)h ()
= m—n)A"h;}(x),

and in the same way
At fy () = (T —n) A"k ()
Furthermore we obtain
AM (@) = B [0 - (@)
By [p(m —n = DA (X310)] = e(m —n)h (x)
= @(m—n—1)A"h(z) — Ap(m —n)h;'(z),
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where we have used the notation

and in the same way we obtain
A fron(x) = o(T —n — DAk, (2) — Ap(T — n)k, ().
For the terms in the sum in the Bellman equation we thus have
Atep™(z) — Atcl(z) = Ap(m —n)A"h (x) + Ap(m —n)hy' (z)
= Ap(m —n)En, [h;nﬂ(X;fH)]
= Ap(m —n)P R (z),
and similarly
AL (@) = A fon(2) = Ap(T — n)P "k, (2).
We thus have the following main result for non exponential discounting.

Proposition 5.1 The extended Bellman system for the non exponential dis-
counting problem (28) is given by

sup {(A“V)n (z) + H(z,u) + Ap(T — n)P%k,( Z Ap(m —n)P A7 (x )}

. ey
Vr(z)
The function sequences h and k are defined by
(@) = Ena [H (Xp, 0n(X0)]
kn(@) = Eng [K (XF)],

A"A™(z) = 0, 0<n<m,
() = H( (),
A%, (z) = 0, 0<n<T,

kr(z) = K(x).

5.2 Infinite horizon

We now consider special the case when the time horizon T is infinite, so the
value functional is given by

Ta(w,0) = En | > ok = n)H (X we(X})) (29)



In this case we have no F' term so the extended equation takes the form

sup {(A“V)n () + H(z,u) + Z Ap(m — n)P“hﬁ(x)} =0

uw m=n+1

We may now use the fact that the setup is time homogeneous. The value
function, will then be time invariant and we have

Jn(z,u) = J(z,0),
where

J(w,w) = By |y (k) H(XE, Uk(Xk‘)l
k=0

The equilibrium control, as well as the equilibrium value function, will also be
time invariant so we have

u,(z) = u(x),
Va(z) = V(x).

We also see that h will be time invariant in the sense that A}’ (z) = h{" ™" (x) so
we make the definition

hm(z) = hy ™" (2) = hg' (2),
and we note that
ho(z) = H(z,a(x)).
Using the definition of A% (x) we also see that in fact

oo

V(@) =Y wlk)hi(z).

k=0

The Bellman equation now takes the form

sup {A“Vn(z) + H(z,u) + Z Agp(k)P“hk(:c)} =0
“ k=1
where, by definition,
Plhy(z) = PUhit(2) = En, [hp 17 (Xp0)]
= Eou [hg ' (X1)] = Bz (a1 (X})]
We can thus state the final result.

Proposition 5.2 For the infinite horizon problem (29) the extended Bellman
system has the form

sup {A“Vn(x) + H(z,u) + i Agp(k‘)P“hk(x)} =0

“ k=1
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or, alternatively,

u

V(z) = sup {H(x, w)+ B, V(X)) + B,

> Aso(k)h’f*(Xf)] } .

k=1

In both cases, the function sequence h¥(x) is determined by the recursion
= E; [hk(X{lﬂ )

R(z) = H(x,a(z)).

hk—i—l

5.3 Quasi-hyperbolic discounting

We now turn to the special case when ¢ is a “quasi-hyperbolic discounting
function”. More precisely we assume that ¢ has the form

e(0) = 1, (30)
ok) = p&*, k=1,2,3,... (31)
where 6> 0 and 0 < § < 1. In this case we have
Ap(l) = pé-1,
Ap(k) = B 1o-1), k=1,2,...

Using the relation

Vi)=Y o(k)h*(x)
k=0
we obtain

ZA(,O k)hF=H(XW)

oo

= (B0 = 1)E, [A°(X])] + B —1) Y 6" B, [BFH(X])]
k=2
= (86— DB, [B°(X1)] + (5 — 1)) B6"E, [h*(X1)]
k=1
=0 -DE, [P°(X{)] + (6 -1 Zﬁé’“ [WF(X1)] +6(8 = 1) E, [R°(X1)]

= (0 = DE, [V(X{)] +6(8 - DE, [hO(Xl )]

Plugging this into the recursive equation in Proposition 5.2 we thus have our
main result for the hyperbolic discounting case.

Proposition 5.3 For the case (30)-(31), of quasi-hyperbolic discounting, the
extended Bellman system takes the form

V(@) = sup {08 [V(X{)] + H(w, u) +0(5 — DE, [H(XT, 0(XT))}- - (32)
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Remark 5.1 We note that if 8 = 1 we have the standard exponential discount-
ing (k) = 6% and the estended Bellman equation in Proposition 5.3 trivializes
to

V(z) =sup {0E, [V(X{)] + H(z,u)}.

which is the classical Bellman equation for the exponential discounting case.

5.4 A variational equation

We now specialize further to the case when the X process is governed by a
stochastic difference equation.

Assumption 5.1 We assume that X and u are real valued, and that X has
dynamics according to

Xnt1 = p(Xn, upn) + 0 (X, un) Yy

We furthermore assume that p and o are deterministic functions, and that
{Y,}o2, is a sequence of i.i.d. random variables.

Our objective is to derive a variational equation, and to this end we note that in
the presnt setting we can write the extended Bellman equation (32) as follows
where, for brevity, we use the notation ¥ = Y7.

Vi) = sup{0B, [V (p(@,u) + o, w)Y)] + H(z,u)
+0(6 = V) Es [H(p(x, u) + oz, w)Y, a(pu(z,u) + oz, u)Y))]}

If we assume an interior optimum we can easily compute the first order condition
for optimum by setting the u derivative equal to zero. The result is as follows.

+ o+ o+ o+ o+
=~
iy
|

58— VB, [H (X1, a(X,
Here we have used the notation
X1 =X} = p, (@) + o (2, 0(2))Y,

and lower case indices, like u,, and 0,, denote partial derivatives.
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From the envelope theorem we furthermore obtain

Va(w) = 0B, [Vo ()] pale, (@) + 0B, Ve (1) Y] oo, (@)
+ Hz(x,ﬁ(:n))_
+ 88— 1By [Ha(X1,0(%0)| o (2, 0()
+ 0B DE, [Ha(R1,8(R0) Y] 0 (2,0())
+ 0B DB, [H(X18(X0) - ()| i (2, 0(a))
+ 0B -1E, [H(X0(X)  w(R)Y | op (0,0()  (34)

We now introduce a another crucial assumption.

Assumption 5.2 We assume that p and o are of the form
pla,u) = plz =), o(w,u) = oz —u)
This is equivalent to saying that
flz = —flu;s Oy = Oy,
and we may now insert (33) above into (34) to obtain
Vi) = Hy (o, 0(2)) + Hy(z, a(x)).

Substituting this expression into (34) gives us the following result.

Proposition 5.4 Given Assumptions 5.1 and 5.2, and assuming smoothness
of all entities as well as an interior optimum in the extended Bellman equation,
we have the following variational equation.

Hy(w,0(2) = 0B, [H, (X,0(%0)] /(@ - )

68 = DE, [Hu(%1,0(X0)) - &(X0)] o (0 — a()

+ o+ 4+ o+ o+
(=9
=
=
8
Sy
0
=
0
<
q\
|
[
E\)
&

88~ DE, [Hu(%1,0(%0) - @/(X)Y] o' (& — a()) (35)

5.5 The Harris and Laibson model

A special case of the setup above is the model studied in [7]. In their model,
the X dynamics have the form

Xn—i—l = R(Xn — Cn) + Yn+1.
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The economic interpretation is that the state variable X denotes cash-on-hand,
the control ¢ denotes consumption, and R is the capitalization factor. The
reward functional has the form

E, |Uler) + 8> 6"Ulcn)
n=1

Comparing to the more general setup in Section 5.4 we thus have

<
o

Q
—~
&

(o)
RIPARTVANLY
Il
—_

We thus have
W=R, o =0 H,=0 H,=U

and, inserting this into the variational equation (35), we obtain
U'(é(x)) = RE, [U’ (6()?1))] +8(8 - 1)RE, [U’ (6()?1)) -8()?1)}

which, for the case of an interior optimum, is precisely the variational equation
(8) in [7].

6 Application 2: Mean variance portfolios

In this example we study a multi-period version of the classical mean variance
problem. A continuous time version of this problem is studied in some detail in
[1], where the authors use a different methodology than in the present paper.
We thus make no claim of originality, apart from the fact that we do not restrict
ourselves to normally distributed returns. More precisely we consider a financial
market consisting of a risky asset with price process S and a standard risk free
bank account with price process B. Recalling that for any process X the process
AX is defined by AX,, = X,, — X,,_1, we assume that the dynamics of S and
B are given by

ASnJrl = SnYnJrh
ABn+1 = BnT',

where the random returns {Yn}:=1 is a sequence of i.i.d. random variables, and
the short rate r is assumed to be constant.

We denote by u, the dollar amount invested in the risky asset at time n,
and by X, we denote the dollar value of the portfolio at time n. For a self
financing portfolio with no consumption the dynamics of X are easily seen to
be given by the expression

AXn—H =rX, +u, (Yn+1 — 7") s
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so, using the notation Z,, =Y,, —r, and R =1+ r, we have
Xn+1 = RXn + unZn+1.

We have no constraints on the control w and the reward functional is given by
the standard mean variance criterion

Jul@,0) = Byo [X8] = S Var,.. (XP)

Recalling that Var(X) = E [X?] — (E[X])?, we see that, in the notation of
Theorem 2.1, we have

Fy,z)=x — 1;102, G(y,z) = T2,
2 2

We can now apply Theorem 2.1. Since F(y,z) = F(x) we have no need of the

fn sequence (the f, terms in the Bellman equation cancel), so the extended

Bellman equation becomes

sup {(A"V), (2) = A" (G og), (2) + HyGn(2)}

0,
VT(:E) = I,

Since G(y,z) = G(z) = Z2? we have (Gog), (z) = G(gn(x)) = 2g2(z), and

after some trivial calculations the extended Bellman equation reduces to the
equation

u v u u
sup { (A"V),, (2) + 2 (PUgu(2))’ — P g2(2)} = 0,
ucR 2
Vr(z) = =,
or, in more concrete terms,
Va(z) = S‘él}; {Emc [Vn+1(Xn+1)] + 9 (Emc [9n+1(Xn+1)])

Y u
- §Enw [972L+1(Xn+1)] } )
Vr(z) = =z,

where the recursion for g is given by

gn(x) = Eng [gn-i-l(X;z]-&-l)]
gr(z) = =z
It is now natural to make the Ansatz (trial solution)
Volz) = Apz+ By,
gn(@)

an + by,
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and try to derive recursive equations for A, B, a, and b. Using this Ansatz, as
well as the dynamics for X, the extended Bellman equation reduces considerably,
and we obtain

Apx + Bpx = Apy1Re + Bqq + sup {—%aiHJQuQ + An+1uu}

where we have used the notation

no o= El[Z],

o? = Var[Z)].
We can now easily determine the equilibrium control as

N Ap g1t
un(x) = ’YG;L o2
n+1

and inserting this into the equation above we obtain

1 A2 /-L2
An Bn = An R Bn 7&7
T+ +1r + bpy1 + 5 ’YOL?L+1U2

which, after identifying coefficients, gives us the recursions

A, = RA,4,

1 A2 pu?
B, = B—H"‘*Lv
' " 27ya2 02
Ar = 1,
By = 0.

We still need to determine the a, sequence and to this end we plug the Ansatz
9gn(x) = apx+by,, and the previously derived expression for 1, into the recursion

gn(m) = FEn. [gn+1(X71;1+1)]
gr(z) = =z.
We thus obtain )
= Any1p
anT +bp = an1 R +bpp1+ —5——
Van+1o—
This gives us
an = anu1 R,
Ay p?
b, = bn+1 + ;71[112,
’Yan-&-lo-
ar = 1,
br = 0
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These equations are easy to solve as

An — RTfnv
’u2
B, = (T-n)-"—,
( n)270_2
a, = R'™™,
I - (T—K)
bn - ; Z R
k=n-+1

and we have the final result.

Proposition 6.1 For the mean variance problem above, we have

12

_ pT—n

and the equilibrium control is given by

() = %R"T*"*U.

7 Continuous time

We now turn to the more delicate case of continuous time models. We start
by presenting the basic setup in term of a fairly general controlled Markov
process. We then formulate the problem and formally define the continuous time
equilibrium concept. In order to derive the relevant extension of the Hamilton-
Jacobi-Bellman equation we discretize, use our previously derived results in
discrete time, and go to the limit. Since the limiting procedure is somewhat
informal we need to prove a formal verification theorem, showing the connection
between the extended HJB equation and the previously defined equilibrium
concept.

7.1 Setup

We consider, on the time interval [0,7] a controlled Markov process in
continous time. The process X lives on a measurable state space {X,Gx }, with
controls taking values in a measurable control space {U,Gy}. The way that
controls are influencing the dynamics of the process is formalized by specifying
the controlled infinitesimal generator of X.

Definition 7.1 For any fized u € U we denote the corresponding infinitesimal

generator by A™. For a control law u, the corresponding generator is denoted
by A"™.
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As an example: of X is a controlled SDE of the form
dXt = /,L(Xt, Ut)dt + O'(Xt, Ut)th,
then we have, for any real valued function f(¢,z), and for any fixed u € U

Avrtr) = D) o m) + Lo 2L

ot oz 2 922 (b7)

For a control law u(t,z) we have

0 0 1 02
AV f(t,x) = %(t,m) + u(m,u(t,x))a—i(t, x)+ 502(30, u(t,x))a—szc(t,x).
By the Kolmogorov backward equation, the infinitesimal generator will, for any
control law u, determine the distribution of the process X, and to stress this
fact we will use the notation X}*. In particular we will have, for each h € R an
operator P}, operating on real valued functions of the form f(¢, ), and defined
as

Plf(t,x) =E [f(t+h,X},)| Xe =a]. (36)

We also recall that JPu
A" = bl o 37
Ao (37)

7.2 Basic problem formulation

For a fixed (t,z) € [0,T] x X, a fixed control law u, we consider, as in discrete
time, the simplified functional

J(t,x,0) = Ep o [Fz, XP)| + G (2, By o [X7]) .- (38)

The most general case will be treated in Section 7.3.2. As in discrete time we
have the game theoretic interpretation that, for each point ¢ in time we have
a player (“player t”) choosing u; who wants to maximize the functional above.
Player t can, however, only affect the dynamics of the process X by choosing the
control u; exactly at time ¢. At another time, say s, the control us will be chosen
by player s. We again attack this problem by looking for a Nash subgame perfect
equilibrium point. The intuitive picture is exactly like in continuous time: An
equilibrium strategy 1 is characterized by the property that if all players on the
half open interval (¢, 7] uses 1, then it is optimal for player ¢ to use 1.

However, in continuous time this is not a bona fide definition. Since player
t can only choose the control u; exactly at time ¢, he only influences the control
on a time set of Lebesgue measure zero, and for most models this will have
no effect whatsoever on the dynamics of the process. We thus need another
definition of the equilibrium concept, and we follow [4] and [5], who were the
first to use the definition below.
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Definition 7.2 Consider a control law 0 (informally viewed as a candidate
equlibrium law). Choose a fized w € U, a fixed real number h > 0. Also fix an
arbitrarily chosen initial point (t,z). Define the control law uy, by

(5,9) = u, fort<s<t+h, yek
Unis:¥) = a(s,y), fort+h<s<T, yeX
If

lim inf J(tvxv Ll) B J(tvl.v uh) 2 0,

h—0 h

for all w € U, we say that 0 is an equilibrium control law. The equilibrium
value function V is defined by

V(t,z) = J(t, z,0).

Remark 7.1 This is our continuous time formalization of the corresponding
discrete time equilibrium concept. Note the necessity of dividing by h, since for
most models we trivially would have

%ir%{J(t,x, a) — J(t,z,up)} = 0.
We also note that we do not get a perfect correspondence with the discrete time

equilibrium concept, since if the limit above equals zero for all w € U, it is not
clear that this corresponds to a mazximum or just to a stationary point.

7.3 The extended HJB equation

We now assume that there exists an equilibrium control law @ (not necessarily
unique) and we go on to derive and extension of the standard Hamilton-Jacobi-
Bellman (henceforth HJB) equation for the determination of the corresponding
value function V. To clarify the logical structure of the derivation we outline
our strategy as follows.

e We discretize (to some extent) the continuous time problem. We then use
our results from discrete time theory to obtain a discretized recursion for
1 and we then let the time step tend to zero.

e In the limit we obtain our continuous time extension of the HJB equation.
Not surprisingly it will in fact be a system of equations.

e In the discretizing and limiting procedure we mainly rely on informal
heuristic reasoning. In particular we have do not claim that the derivation
is a rigorous one. The derivation is, from a logical point of view, only of
motivational value.

e We then go on to show that our (informally derived) extended HIB equa-
tion is in fact the “correct” one, by proving a rigorous verification theorem.
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7.3.1 Deriving the equation

In this section we will, in an informal and heuristic way, derive a continuous
time extension of the HJB equation. Note again that we have no claims to rigor
in the derivation, which is only motivational. To this end we assume that there
exists an equilibrium law t and we argue as follows.

e Choose an arbitrary initial point (¢,2). Also choose a “small” time incre-
ment h > 0.

e Define the control law uy on the time interval [¢, T] by

wn(s,y) = u, fort<s<t+h yeiX
S Y) = ua(s,y), fort+h<s<T, yelX

e If now h is “small enough” we expect to have
J(t,z,up) < J(t, z,0),
and in the limit as h — 0 we should have equality if u = a(¢, ).

If we now use our discrete time results, with n and n+ 1 replaced by ¢ and t+ h,
we obtain the inequality

(AZV)(t,Q?)—( Zf)(tamvx)""( }ff")(t,:v)—A’,i(Gog)(tx)—k( Zg)(fvw)ﬁo

where
(AZV) (ta CC) = Et’w [V(t + h’ tquh)} - V(t7 ;C)

and similarly for the other terms. We now divide the inequality by h and let h
tend to zero. The the operator A} will converge to the infinitesimal operator
A", but the limit of h=! (HYg) (¢, ) requires closer investigation.

We have in fact

(Hyg) (t,2) = G*(Epo [g(t + h, X7 5)]) — G (g(t, ).
Furthermore we have the approximation
Bro [g(t+h, X}y ,)] = g(t,2) + A¥g(t, ) + o(h),
and using a standard Taylor approximation for G* we obtain
G™(Bra [g(t+ b, Xi4y,]) = G (g(t,2)) + Gy (g(t, ) - A¥g(t,x) + o(h),

where

e

Gy (y) o9

(y).

We thus obtain
R S :r u
}llli% E (th) (ta :L') = Gy(g(tvx)) A g(t,a:).

Collecting all results we arrive at our proposed extension of the HJB equation.
To stress the fact that the arguments above are largely informal we state the
equation as a definition rather than as proposition.
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Definition 7.3 The extended HJB system of equations for the Nash equilibrium
problem is defined as follows.

sup {(A"V) (t,2) — (A"f) (¢, 2, 2) + (A" f) (¢, @)

—A"(Gog)(t,x)+ (H"g) (t,x)} = 0, 0<t<T,
ASfY(tz) = 0, 0<t<T,
AY(t,z) = 0, 0<t<T,
V(T,z) = F(z,z)+ G(z,x),
Y (T.x) = F(yz),
g(T, ) T

Here 1 is the control law which realizes the supremum in the first equation, and
fY, Gog, and Hg are defined by

fy(taz) = f(tvx’y)

(Gog)(t,x) = G(m,g(t,x)),
HY%(t,x) = Gy(xvg(tﬂ z)) - Ag(t, z),
Gyloy) = Golew)

We now have some comments on the extended HJB system.

e The first point to notice is that we have a system of recursion equation
(5)-(10) for the simultaneous determination of V, f and g.

e In the case when F(xz,y) does not depend upon z, and there is no G term,
the problem trivializes to a standard time consistent problem. The terms
(AYf) (t,z,x) + (A% f*) (t,z) in the V-equation cancel, and the system
reduces to the standard Bellman equation

(A"V)(t,z) = 0,
V(T,z) = F(x).
e In order to solve the V-equation we need to know f and g but these are

determined by the optimal control law 1, which in turn is determined by
the sup-part of the V-equation.

e We can view the system as a fixed point problem, where the optimal
control law u solves an equation of the form M (u) = u. The mapping M
is defined by the following procedure.

— Start with a control u.
— Generate the functions f and g by the ODEs

AvfY(t,z) = 0,
AYg(t,z) = 0,

and the obvious terminal conditions.
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— Now plug these choices of f and ¢ into the V' equation and solve it
for V. The control law which realizes the sup-part in the V-equation
is denoted by M (u). The optimal control law is determined by the
fixed point problem M (i) = .

This fixed point property is rather expected since we are looking for a
Nash equilibrium point, and it is well known that such a point is typically
determined as fixed points of a mapping. We also note that we can view
the system as a fixed point problem for f and g.

e The equations for g and f¥ state that the processes g(t, X2) and f¥(¢, X2))
are martingales. From the boundary conditions we then have the inter-
pretation

f(t,$7y) = Et,a: [F<an’§“l)j| )
g(t,z) = E., [X%] )
e We note that the g function above appears, in a more restricted framework,
already in [1], [4], and [5].
7.3.2 The general case

We now turn to the most general case of the present paper, where the functional
J is given by

T
J(t,x,u) = Ey / Ctz,s, X2, u(XM))ds+ F(t,z, XT)
¢

(39)
Definition 7.4 Given the objective functional (39) the extended HJIB equation
for V is given by

sgg{(A“V) (t,z)+ C(t,z, t,x,u) — /T(A“cs)(t,x,t,x)ds + /T(A“cms)(t,x)ds
u t t
— (A"f) (t, @, t,2) + (A" ) (t,2) — A" (G og) (t,2) + (H"g) (t,7) }
with boundary condition
V(T,z)=F(T,z,2)+ G(T,z,x).
Furthermore, the following hold.
1. For each fized s and y, the function f%Y(t,x) is defined by

ASf¥(tx) = 0, 0<t<T
Y (T,z) = F(s,y,x)
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2. The function g(t,x) is defined by

Aﬁg(t,x) = 0, 0<t<T
g(T,z) = =
3. For each fized s, v and y, the function c¢*¥"(t,x) is defined by
(At (t,z) = 0, 0<t<v
(rx) = Cls,y,r,z, 0, (2))

4. We have used the notation

flt,z, s,y
c(tx, t,x

) = [P(e)
)
(Gog)( x)
)
)

tms(t 13)
G(t,z, g(t,x)),
= Gy(tvﬁvg(tvx)) ' Aug(t,l‘),

“Yo(t,x

Gylz,y) = %(t,w,y)-
5. The probabilistic interpretations of f, g, and c are given by
fUtr) = Eo[F(s,y,XP)], 0<t<T
gt,x) = B, [X}], 0<t<T
V(tx) = B [C(s,y,r, Xf’,ﬁ(XT‘j‘))} , 0<t<r

6. In these expressions, G always denotes the equilibrium control law.

Remark 7.2 We can easily extend the result above to the case when the term
G (t,x, By 5 [X}]) is replaced by

G (tv Z, Et,-’lf [h (X'}l)])
for some function h. In this case we simply define g by
g(t,x) = Ea [0 (XF)].

The extended HJB system then looks exactly as in Definition 7.4 above, apart
from the fact that the boundary condition for g is changed to

9(T,2) = h(z).
See [9] for an interesting application.
Remark 7.3 It is of course also possible to include terms of the type
K(t, s, Bva [b(X)])

in the integral term of the value functional. The structure of the resulting HJB
system is fairly obvious but we have omitted it since the present HJB system is,
in our opinion, complicated enough as it is.
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7.3.3 A simple special case

We see that the general extended HJB equation is quite complicated. In many
concrete cases there are, however, cancellations between different terms in the
equation. The simplest case occurs when the objective functional has the form

J(t,x,u) = By o [F(XF)] + G (B2 [X7])
and X is a scalar diffusion of the form
dX; = p(Xy, ug)dt + o( Xy, u)dWy.
In this case the extended HJB equation has the form

sup {A"V(t,2) — A" [G (9(t, )] + G (g(t, ) A"g(t, x)} = O,

and a simple calculation shows that
1
—A"[G (gt 2))] + G'(g(t,2))A"g(t, ) = —502(% u)G" (g(t, 2)) g3 (¢, @),

where g, = %. Thus the extended HJB equation becomes

sup { A"V (1.0) - L) e 0) | =0 (a0

ueU

We will use this result in Section 10 below.

7.3.4 A scaling result

We now extend the results from Section 2.4.6 to continuous time. Let us thus
consider the objective functional (39) above and denote, as usual, the equilib-
rium control and value function by & and V respectively. Let ¢ : R — R be a
fixed real valued function and consider a new objective functional J,,, defined
by,

Jo(t,z,u) = (z)J(t,z,u), n=0,1,...,T

and denote the corresponding equilibrium control and value function by @, and
Vi, respectively. Since player No t is (loosely speaking) trying to maximize
J,(t, x,u) over uy, and p(x) is just a scaling factor which is not affected by us
the following result is intuitively obvious. The formal proof is, however, not
quite trivial.

Proposition 7.1 With notation as above we have

V@(t“r) = (,O(LU)V(t,CL'),
a,(t,z) = u(t,z).
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Proof. For notational simplicity we consider the case when J is of the form

= B, [F(x, X3)] + G (z, B o [ X¥]).

The proof for the general case has exactly the same structure.
For J as above we have the extended HJB system

sup {(A"V) (t,x

ueU

We now recall the probabilistic interpretations

ft,z,y)

and the definition

From this it follows that

- (Auf) (t,l‘,l‘) +

— A" (Goyg)(t,a) + Gy(,g(t,x)) - Ag(t,x
A® fy

(Gog)(tx)

V(tv .’t) =

(A"F7) (¢,

5

/\

E%

H

0, 0<t<T,
0, 0<t<T,
0, 0<t<T,
F(z,z)+ G(z,x
F(y,z),

x.

Epo [F(x, XP)] + G (2, By o [X7])

Et,x [F(y’X%)] ’

E. [X7].

f(t’ 1’7 :L') +

We now turn to J,, which can be written

where

and we note that

Fo(z,y) = o(@)F(z,y),
Go(r,y) = o(x)G(x,y),
G, —

By (z,y) = o(x)Gy(z,y)

We thus obtain the HJB equation

sup {(A“f2) (t,2) + @(2)Gy(x, g (t, x)) - Atgy(t,x)} =0,

45

= G(z,9(t,2)).

(Gog)(t,

so the first HIB equation above can be written

sup {(A"f7) (t,2) + Gy (w, g(t, x)) - A¥g(t,

z),

x)} = 0.

= Eyq [Fp(z, XP)] + Gy (2, Ere [XT])

(41)



with f, and g, defined by

Aﬁwfg(tvx) = 0,
Aﬁq)gso(t?x) Oa
2(T,x) = @(y)F(y,x)
9o(T,x) = .
From this it follows that we can write
fcp(taxay) = @(y)fo(tvxvy)7
g@(tvx) = 90(t7w)
where
A% fY(t,x) = 0,
Aﬁv’go(t,:v) = 0,
(Z)/(wa) = F(y,x),
g(T,x) = «=x.

and the HJB equation has the form

sup {(z) (A" f5) (8, 2) + ¢ (2)Gy (2, 9o(t, 2)) - A"go(t,2)} = 0,

ueU

or, equivalently,

sup {(A"f§) (t,x) + Gy(x, go(t, x)) - A¥go(t,z)} = 0.

We thus see that the system for f, g, and 101 is exactly the same as that for fo,
go, and G,. We thus have

f@(t’xry) = w(y)f(t7x7y)a
gs&(tvx) g(t,.’L‘),

Moreover, since
V@(t»x) = fcp(tvxﬂx) + (G<P 0999) (t,l’),
we obtain
Vo(t,x) = @)V (t, ).
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7.3.5 A Verification Theorem

As we have noted above, the derivation of the continuous time extension of the
HJB equation is rather informal. It seems reasonable to expect that the system
in Definition 7.3 will indeed determine the equilibrium value function V', but so
far nothing has been formally proved. However, the following two conjectures
are natural.

e Assume that there exists an equilibrium law @ and that V is the corre-
sponding value function. Assume furthermore that V is regular enough
to allow allow A“ to operate on it (in the diffusion case this would imply
V € C12?). Define f and g by

f(t,a:,y) = Et,w [F(ang)] ) (42)
g(t,l‘) = Et,ac [X%] . (43)

Then V satisfies the extended HJB system and u realizes the supremum
in the equation.

e Assume that V, f, and g solves the extended HJB system and that the
supremum i the V-equation is attained for every (¢,x). Then there exists
an equlibrium law 0, and it is given by the optimal u in the in the V-
equation. Furthermore, V' is the corresponding equilibrium value function,
and f and g allow for the interpretations (42)-(43).

In this paper we do not attempt to prove the first conjecture. Even for a
standard time consistent control problem, it is well known that this is technically
quite complicated, and it typically requires the theory of viscosity solutions. We
will, however, prove the second conjecture. This obviously has the form of a
verification result, and from standard theory we would expect that it can be
proved with a minimum of technical complexity.

Theorem 7.1 (Verification Theorem) Assume that V', f, g is a solution
of the extended system in Definition 7.3, and that the control law G realizes
the supremum in the equation. Then W is an equilibrium low, and V is the
corresponding value function. Furthermore, f and g can be interpreted according

to (42)-(43).

Proof. The proof consists of two steps:

e We start by showing that V is the value function corresponding to 1,
ie. that V(t,z) = J(t,x,0), and that f and g have the interpretations
(42)-(43).

e In the second step we then prove that 01 is indeed an equilibrium control
law.
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To show that V' (¢,z) = J(t, z,0), we use the V equation to obtain:
(A™V) (t,2) = (AYS) (t,2,2) + (AVF7) (t,)
~A"(Gog)(t,2) + (H%) (tz) = 0,

where A )
Hug(tvx) = Gy(xag(tax)) ~Aug(t,$).

Since V, f, and g satsifies the extended HJB, we also have
(A%f?) (tx) = 0, (44)
Alg(t,x) = 0, (45)
and we thus have the equation
(A™V) (t,z) — (A%f) (t,z,2) — A" (Gog) (t,z) = 0. (46)

We now use Dynkin’s Theorem which says that if X is a process with infinites-
imal operator A, and if h(t,z) is a sufficiently integrable real valued function,
then the process

t
h(t, X,) — / Ah(s, X,)ds
0

is a martingale. Using Dynkin’s Theorem we thus have

Et,w [V(T, XT)] = V(t, Jf) + Etﬂ;

T

/ AﬁV(s,Xf)ds] ,
¢

and from (46) we obtain

T T
B, [V(T,X}] =V(t,2)+E: / A% f(s, X2 X3ds) | +E; o / A" (Gog)(s,XY)ds
t t

We again refer to Dynkin and obtain

Etw

s

T
[ st = ) - )

Et,:r

/fAﬂ(Gog)(st?)dS] = B [G(X71,9(T, X1))] — G(z,g(t, x)).

Using this and the boundary conditions for f and g we get

Beo [F(XP, XP) +G(XE,XP)] = V(ta)+ EBeo [FIXE, XP)] — f(t,2,2)
+ Et,ac [G(X%vX%)] - G(x,g(t,x)),

i.e.

Vt,x) = f(t,z,x) + Gz, g(t, x)). (47)
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Now, from (44)-(45) it follows that the processes f¥(s, X2) and g(s, X%) are
martingales, so from the boundary conditions for f and g we obtain
f(t,x,y) = Et,m [F(an%)] )
g(t,x) = Eig [X}‘] .

This shows that f and g have the correct interpretation and, plugging it into
(47) we obtain

V(t,z) = By [F(, X3)] + Gz, Br o [XF])) = J(t,2,0).

We now go on to show that 0 is indeed an equilibrium law. To that end
we construct, for any A > 0 and an arbitrary u € U, the control law u;, defined
in Definition 7.2. From Lemma 2.2, applied to the points ¢t and ¢ + h, we have

Jo(z,u) = B, [J(t+h X[, 0)]
{Bro [+ 0 Xy XEp)] = B [fU(E+ 7 X, @) }
{Ere [G (X, 9"+ 0, XE40)] — G (z, Erg [9™(E+ R XE0)]) -

where, for ease of notation, we have suppressed the lower index h of u,. By the
construction of u we have

J(t+h,XZ‘+h,u) = V(t+h, XHh)
fu(t +h Xtu+hv ) = f(t +h, Xt+h7 )7
(t +h Xt+h) = g(t +h, Xtu—‘rh)a

so we obtain

Jp(z,u) = Ei, [V(tJFh t+h)]
{Et,:v [ t+ h Xt+ha ﬁrhﬂ - Etﬂc [f(t + h t+hv )]}
{Et,az [ ( t+h> 9 (t +h Xt+h))] -G (;v, Et,x [ (t + thZLJrh)])} .

Furthermore, from the V-equation we have

(A"V) (t,x) = (A"f) () + (A" f7) (&, )
—A"(Goyg)(t, )+ (H") (t,z) < O,

for all w € U. Discretizing this gives us

Eio [V(t+h, X)) = V(tx) = {Eee [f6 X0 Xi40)] — ft2,2)}

+E; . [f(t DN )] f(t,z,r)
—E [G( +h,g(t+h Xt+h)] + G(x, g(t, z))
+G (2, By [g(t +h, X)) — Gla, g(t,x)) < o(h),
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or, after simplification,

V(t,z) > Eio [V(E+h X)) — Bro [f6 X0 Xi00)] + Ere [f(£ Xt+ha )]
— B, [Gt+hgt+h XA4)] +Glx, By [g(t+h, X4 0)] +
Using the expression for .J,,(z,u) above, and the fact that V (¢, ) = J(¢, z,0),

we obtain
‘](ta xz, ﬁ) - ‘](t7 Zz, u) > O(h)7

SO

and we are done. |

8 An equivalent time consistent problem

The object of the present section is to provide a surprising link between time
inconsistent and time consistent problems. To this end we go back to the general
continuous time extended HJB equation. The first part of this reads as

T T
sup{(A"V) (t,z) + C(x,x,u) —/ (A“cs)t(a:,x)ds—F/ (A%c®®)(x)ds
ueU t t
—(A"f) (t,z,z) + (A" f*) (t,z) — A" (Gog) (t,z) + (H"g) (t,2)} = 0.

Let us now assume that there exists an equilibrium control law . Using G we
can then construct ¢, f and g by solving the associated equations in Definition
7.3. We now define the function h by

h(t,z,u) = C(m,w,u)—/t (A“cs)t(;v,x)ds—i—/t (A%c>®)(x)ds
- (AY) Gz, x) + (A f7) () — A" (Gog) (t,x) + (H"g) (¢, 7).

With this definition of h, the equation for V' above and its boundary condition
become

31615 {(A*V) (t,z) + h(t,z,uw)} = 0,

V(T,x) = F(z,z)+ G(z,x).

We now observe, by inspection, that this is a standard HJB equation for the
standard time consistent optimal control problem to maximize

T
Et,m / h(S,XS7uS>dS+F<XT7XT) +G(XT,XT) . (48)
t

We have thus proved the following result.
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Proposition 8.1 For every time inconsistent problem in the present frame-
work there exists a standard, time consistent optimal control problem with the
following properties.

o The optimal value function for the standard problem coincides with the
equilibrium value function for the time inconsistent problem.

e The optimal control for the standard problem coincides with the equilibrium
control for the time inconsistent problem.

e The objective functional for the standard problem is given by (48).

We immediately remark that the Proposition above is mostly of theoretical
interest, and of little “practical” value. The reason is of course that in order
to formulate the equivalent standard problem we need to know the equilibrium
control . In our opinion it is, however, quite surprising.

Furthermore, Proposition 8.1 has modeling consequences for economics.
Suppose that you want to model consumer behavior. You have done this using
standard time consistent dynamic utility maximization and now you are con-
templating to introduce time inconsistent preferences to obtain a richer class of
consumer behavior. Proposition 8.1 then tells us that from the point of view
of revealed preferences, nothing is gained by introducing time inconsistent pref-
erences: Every kind of behavior that can be generated by time inconsistency
can also be generated by time consistent preferences. We immediately remark,
however, that even if a concrete model of time inconsistent preferences is, in
some sense, “natural”, the corresponding time consistent preferences may look
extremely “weird”.

9 Example: Non exponential discounting

We now illustrate the theory developed above, and the first example we consider
is a fairly general case of a control problem with non exponential discounting.
The model is specified as follows.

e We consider a controlled, not necessarily time homogeneous, Markov pro-
cess in continuous time with controlled infinitesimal generator A“.

e The value functional for player number ¢ is given by

T
J(t,eou) = By, / p(t— ) H (X2, u (X2))ds + o(T — T (X3) |,

where the discounting function ¢(t), the local utility function H(x,u) and
the final state utility function I'(z) are deterministic functions.

e Without loss of generality we assume that

»(0) =1.
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In the notation of Definition 7.4 we see that we have no G-term so the extended
HJB equation has the form

T T
sup{(A"V) (t,z) + C(t,x,t, x,u) — / (A“S®)(t,x, t,x)ds —|—/ (A¥™*)(t, x)ds
uel t t
- (A"f) (t,z,t,2) + (A" f7) (L)} = 0,

We recall the relations

fU(ta) = By [F(s,y,XP)], 0<t<T
fltat,x) = fo(t),

Y (t,x) = B, [C(ry s, X0 uX“))] 0<t<r.
Cltota) = ¢(t,a)

as well as the notational convention that the operator A™ operates only on
the variables within the parenthesis, whereas upper case indices are treated as
constant parameters. In our case the y variable is not present, so we can write

fsy(tvx) = fs(t’x)
Y (tx) = (L)

and the extended HJB equation takes the form

T T
sup{(A"V) (t,z) + C(t,t,x,u) —/ (Av“c®)(t,t,z)ds + [ (A“c™)(t,x)ds
ueU t t

( )(tvtw%') Auft)( )} = 0,

where
fP(tz) = Eu.[F(s,X})], 0<t<T,
(t t,x) = fit ),
( ’ ) = Et,z [C (T787X§17ﬁ(X§1))} ’
(t t,x) = ().

In our case we furthermore have

Ct,s,z,u) = p(s—t)H(z,u),
F(t,x) = T -t (x).
SO we can write
fs(t7$) = (P(T_ 5)7(t7x)7
P (tyx) = o(s—r)h’(tx
St t,x) = p(s—t)h*(t,x)
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where v and h are defined by

B, [D(XP)], 0<t<T,
Bio [H (X2 a(XD)], 0<t<s.

SO
—~
\’PF \.PF
8 8
N~— ~—
([

We now easily obtain

C(t,tyx,u) = H(x,u),
Avc(t,x) = (s —1)AYR%(L, x),
At (t,t,x) = @(s—t)A"h5(t,x) — @' (t — s)h*(t, 2),
Avfi(t,z) = o(T —t)A"y*(t,z),
A'f(ttx) = (T =) A" y(t,z) = (T = t)y(t, ).

We have thus proved the following result.

Proposition 9.1 The extended HJB system has the form

I
(=)

T
sup {A“V (t,z) + H(z,u) + / ¢'(s —t)h*(t,x)ds + ' (T — t)y(t, x)}
ueU t

where h® and v are determined by

Aﬁhs(t7m) = 0, 0<t<s,
A%(t,z) = 0, 0<t<T,
he(s,z) = H (z,0,(x)),
VT,x) = T(x).

This generalizes the corresponding results in [4] and [5], where special cases are
treated in great detail.

10 Example: Mean-variance control

In this example we will consider dynamic mean variance optimization. This is
a continuous time version of a standard Markowitz investment problem, where
we penalize the risk undertaken by the conditional variance. As noted in the
introduction, in a Wiener driven framework this example is studied intensively
in [1], where the authors also consider the case of multiple assets, as well as the
case of a hidden Markov process (unobservable factors) driving the parameters
of the asset price dynamics. For illustrative purposes we first consider the
simplest possible case of a Wiener driven single risky asset and, without any
claim of originality, re-derivethe corresponding results of [1]. We then extend
the model in [1] and study the case when the risky asset is driven by a point
process as well as by a Wiener process.

93



10.1 The simplest case

We consider a market formed by a risky asset with price process S and a risk
free money account with price process B. The price dynamics are given by
dSt = OéStdt + O'Stth,
dBt = 'I"Btdt,
where o and o are known constants, and r is the constant short rate.
Let u; be the amount of money invested in the risky asset at time t. The
value X; of a self-financing portfolio based on S and B will then evolve according

to the SDE
dX; = [rX; + (o — r)w]dt + ou dWy. (49)

Our value functional is given by
J(t,z,u) = B, , [X3] - %Vart,x (XD,

so we want to maximize expected return with a penalty term for risk. Remem-
bering the definition for the conditional variance

Var,o[Xr] = By o[ X7] - B ,[X1),
we can re-write our objective functional as
J(tz,0) = By, [F(X7)] - G(E, , [X7])

where F(z) = 2 — 2 and G(x) = J#?. As seen in the previous sections, the

term G(E, , [X7]) leads to a time inconsistent game theoretic problem.
The extended HJB equation is then given by the following PDE system:

1
sup {[rx + (a—r)u]V, + 502u2Vm —AY(Gog)+ Hug} = 0,
V(T,z) = =,
Alg = 0,
g(T,z) = =,

where lower case index denotes the corresponding partial derivative. This case
is covered in Section 7.3.3, and from (40) we can simplify to

1
Vi + sup {[m + (a—r)ulV, + 502U2wa - 502U29§} =0
u
V(T,z) =
Alg =
gTz) =
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Given the linear structure of the dynamics, as well as of the boundary
conditions, it is natural to make the Ansatz

V(t,x) A(t)x + B(t)
g(t,z) = a(t)x+b(t).

With this trial solution the HJB equation becomes

Ax + By + sup {[mc + (a—r)ulA — %02%&2@2} = 0, (50)
a4+ by + [re + (o —r)dla = 0, (51)
A(T) = 1,
B(T

S

—~
N

~— N N
I

o = o = o

We first solve the static problem embedded in (50). From the first order condi-
tion, we obtain the optimal control as

_la-—rA®)

Sy o ()

a(t, x)

so the optimal control does not depend on x. Substituting this expression for @
into (50) we obtain:

1 _ 2A2
Aix + By + Arx + —M—Q =0.
2y o a

By separation of variables we then get the following system of ODEs.

At+AT = 0,
A(T) - )

1 (a—r)? A2
Bt~ @ =0
B(T) = 0

We immediately obtain
At) = enT=1),

Inserting this expression for A into the second ODE yields

1 (Oé _ 7")2 627"(T7t)
B+ — = 0 52
et 2y o2 a? ’ (52)

B(T) = o.
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This equation contain the unknown function a, and to determine this we use
equation (51). Inserting the expression for @ into (51) gives us

1 _\2 r(T—1)
atx—&-bt—i—mca—l——we = 0,
v o a
a(T) = 1,
b(T) = 0.

Again we have separation of variables and obtain the system

ar+ar = 0,
1(a—r)2eT-t)
vy o a

This yields
a(t) = e"(T=0),

and the ODE for b then takes the form

We thus have

Introducing the results in the optimal control formula, we get

it ) = lazr — Te—r(T-),
v o

Using the expression for a above, we can go back to equation (52) which now
takes the form

1 (a—7)?
B — =0
t+2’y 0_2 )
SO ( )2
1l (a—r
B(t) = ———(T —t).
()= 5o g (T 1)

Thus, the optimal value function is given by

a2
Vit,z)=e T 4 217(0‘07")@ —1)

We summarize the results as follows:

Proposition 10.1 For the model above we have the following results.
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e The optimal amount of money invested in a stock is given by

la—
a(t,z) = ~a 5 Le—r(T=1)
v o

e The equilibrium value function is given by

(o —r)?

1
Vit,z)=e T Vg + — T —t).
(t,r) =e x+27 7 ( )

g

o The expected value of the optimal portfolio is given by

1 _ 2
Eig[Xr]=e T g+ *M(T —1).
Y g

Using Proposition 8.1 we can also construct the equivalent standard time
consistent optimization problem. An easy calculation gives us the following
result.

Proposition 10.2 The equivalent (in the sense of Proposition 8.1) time con-
sistent problem is to maximize the functional

2 T
Xr — %/ eQT(T_s)ugdsl
¢

muax Et, -

given the dynamics (49).

We note in passing that
o?uldt = d(X);.

10.2 A point process extension

We will now present an extension of the mean variance problem when the stock
dynamics are driven by a jump diffusion. We consider a single risky asset with
price S and a bank account with price process B. The results below can be
easily extended to the case of multiple assets, but for ease of exposition, we
restrict ourselves to the scalar case. The dynamics are given by

dsS

Oé(t7 St)Stdt + O'(t7 St)Stth + St, / ﬁ(Z)/j/(dZ, dt),
Z
dB; = rdt.

Here W is a scalar Wiener process and p is a marked point process on the
mark space Z with deterministic intensity measure A(dz). Furthermore, a(t, s),
o(t,s) and ((z) are known deterministic functions and r is a known constant.
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As before u; denotes the amount of money invested in the stock at time ¢,
and X is the value process for a self financing portfolio based on S and B. The
dynamics of X; are then given by

dX; = [rXe + (a(t, Si, Vi) — r)uldt + o(t, Sy, V) udWy + uy— / B(z)u(dz, dt).
z
Again we study the case of mean-variance utility, i.e.
J(tw0) = By, [XF] = JVary, (X3).

The extended HJB system now has the form
sup {A"V (¢, z,5) — A“(Gog)(t,z,s) + (H"g) (t,2,5)} = 0,  (53)

V(T’x’s) = :1:’
Alg = 0, (54
9(T,z,8) = .

As before, we make the Ansatz

V(t,z,s) = A(t)x+ B(t,s),
g(t,z,s) = a(t)z+b(t,s),
A(T) = 1,
B(T,s) = 0
a(T) = 1,
b(T,s) 0.

After some simple but tedious calculations, equation (53) can be re-written as
1
sup{Aix + Bt + A[rz + (o — r)u] + asBs + 50252353 + Au/ B(2)A(dz)
u Z

+ /Z[B(t, s(1+ B(2))) — B(t, s)]\(dz) — %azfy[au +bys]?

ApB(t,s,2)

f% / [auB(z) + b(t, s(1 + B(2))) — b(t, s)]*A(d2)} =0 (55)
z

Apb(t,s,z)
First, we solve the embedded static problem in (55)
1
max {(a —r)Au+ Au/ B(2)A(dz) — 502 [au 4 bes]? — % / [auB(z) + Agb])\(dz)}
“ z z

and obtain the optimal control

alt.z,s) = [a(t, s)—r+ /[, ﬁ(z))\(dz)] A(t) _U(t, s)bs(t,s)s + [, B(2)Agb(t, s, z)\(dz)

va? ()03 (t 5) + [ 8 (2)A(dz)] a(t)[o?(t, s) + [, B2 (2)A(d2)]
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Again we see that the optimal control does not depend on z. We can plug the
optimal control into equation (55) and as before, we can separate variables to
obtain an ODE for A(t) and a PIDE for B(¢,s). The ODE for A is

At+TA:0
A(T) =0

with solution A(t) = e"("=Y). The PIDE for B(t,s) becomes

By + (o — )it + asBs + ;o 2By, + Au/ B(:)Adz)  (56)
4 /Z A BIA(dz) — %a%[a(t)m bes? (57)
-1 /Z [a()iB(2) + AgbPA(dz) = 0 (58)
B(T,s) =0 (59)

In order to solve this we need to determine the functions a(t) and b(¢,s). To
this end we use (54). This can be rewritten as

arx + by + [re + (o — r)tla + asbs + %02321755
vai [ BN + [ Agbaaz) =0, (60)
z z

with the appropriate boundary conditions for a and b. By separation of variables
we obtain the ODE

ar +ra =0,
a(T) =1,

and the PIDE

I
o

by + (o — r)la 4+ asbs + 0‘ s2bss+au/ﬁ dz)+/ AgbA(dz)
z
b(T,s) = 0.

From the ODE we have a(t) = """ and, plugging this expression into
the previous formula for 4, gives us

Qo a—r+ [, B(z)A(dz) ey Ob ss+ [, B( A@b)\(dz) (Tt

Vo2 + [, B2(2)A(d=)] 0%+ [, B2(2)\(d2)]

We can now insert this expression, as well as the formula for a, into the
PIDE for b above to obtain the PIDE
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B [a— 7+ [, B(y)A(dy)] o a 22 [ —r+fZ6(y))\(dy)}2
1), 52 dp)] | e e T B () A(dy)

O‘_r‘f'fz B(y)A(dy) _
/Aﬁ“”{ ~ T B "2 =0

bt+ [0

T,5)=0

This rather forbidding looking equation cannot in general be solved explicitly,
but by applying a Feynman-Kac representation theorem we can represent the
solution as

T [a(r, Sy) — A(dz)]?
b(t,s) = ES, / [0‘(72 ) 1+ J AN R (61)
T A1) + [ B2(2)A(d2)]
Here the measure @ is absolutely continuous w.r.t. P, and the likelihood process
dq
Lt = dip on ft,

has dynamics given by

ALy = LigdW, + L, / 0(2) [u(dz, dt) — \(d2)dt],

Z
with ¢ and 7 given by
_ ot s) =+ [, Bw)Ady)] o(t, 5)
L 7T Ry AR
L LT O}

[02(t, s +fzﬂ2 YA(dy)

From the Girsanov Theorem it follows that the @ intensity A9, of the point
process p(dt,dz) is given by

Qo gy by [ots) =+ [ 8] o
A, d2) {1 20 1 T, Py D) [ M)
and that

th:_[a(t St 7’+fZ }atSt dt+thQ

[02(t, 51) +fZﬂ2 Ady)]

where W€ is Q a Wiener process. A simple calculation now shows that the Q
dynamics of the stock prices S are given by

dS, = rS,dt + Syo(t, S,)dWE + S, / B(2) [u(dt, dz) — A9(t, S, dz)]
zZ
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so the measure @) is in fact a risk neutral martingale measure, and it is easy to
check (see for example [2]) that @ is in fact the so called “minimal martingale
measure” used in the context of local risk minimization and developed in [12]
and related papers. This fact was, in a Wiener process framework, observed
already in [1].

Performing similar calculations, one can show that the solution of the PIDE
(58)-(59) can be represented as

/T (@—7+ ﬂ(z)/\(dz))2d7_]

B(t,s) = Egs

Vo? + [, B2 (2)A(d2)]

T
1
_ESS [/ 2027[6T(T—T)ﬂ+bss]2dT]

T
—EC, [ Y / [e’"(T_T)ﬁﬁ(z)+Agb]2)\(dz)d7'1, (62)
e 202

with @ as above.
We can finally summarize our results.

Proposition 10.3 With notation as above, the following hold.

e The optimal amount of money invested in a stock is given by

(o =1+ [, BENI) _royy_(obes 1 [, BEADENI) oy
Vo? + [, B2(2)A(d?)] (02 + [, B2(2)A(d2)]

ﬁ:

e The mean-variance utility of the optimal portfolio is given by
Ult,z) = e" Tz 4+ b(t, s)
where b(t, s) is given by stochastic representation (61).
o The expected terminal value of the optimal portfolio is
B o [X7] = ze" TV 4 B(t, s)
where x is the present portfolio value and B(t, s) is given by the stochastic

representation (62).

11 Example: The time inconsistent linear quadratic
regulator

In this example we consider a problem where the utility function at 7" depends
on the current state X;. The model is specified as follows.
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e The value functional for player ¢ is given by

1 T
= / u?ds
2/,

where < is a positive constant.

o + %Etz [(XT - x)ﬂ

e The state process X is scalar with dynamics
dX; = [aX; + buy) dt + odWs,
where a, b and ¢ are given constants.
e The control u is scalar with no constraints.

This is a time inconsistent version of the classical linear quadratic regulator.
Loosely speaking we want control the system so that the final sate X is close
to x while at the same time keeping the control energy (formalized by the
integral term) is small. The time inconsistency stems from the fact that the
target point = X is changing as time goes by.

For this problem we have

F(l’,y) = y-
Cu) = %uQ

and as usual we introduce the functions fY(¢,z) and f(¢,z,x) by
4 2
fte) = B |(X8-y)7],
ftzy) = [t ).
The extended HJB system takes the form

inf{A"V(t,x)Jr;uerA“fI(t,x)A“f(t,z,x)} = 0, 0<t<T
V(T,z) = 0,
AfU(ta) = 0, 0<t<T
T = Sa—y)
From the X dynamics we see that
w 0 0 1,0
so we obtain
, ofY ofY 1 ,0%fY
u £y _ - Z
AV fY(t, x) s —(t,x) + (ax + bu) o (t,x)—|—20 57 (t,x)
of of of 1 o’f o*f  O*f
A" = —= AT I
ft,z,7) gt T laz+b) {a oy %2" {3x2+3 * vy
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where the derivatives of f in the last equation are evaluated at (¢, z,x). We thus
obtain the following form of the HJB equation, where for shortness of notation
we denote partial derivatives by lower case index so, for example, f, = %. All

V terms are evaluated at (¢,z) and all f terms are evaluated at (¢, z, ).

1 1
inf {Vt + (ax + bu)V, + 502sz +—u? — (az + bu) fy — JQfa:y _ Unyy}

2
V(T,x)
The coupled system for fY is given by
L (t,2) + [ax + bl(t, x)] fL(t, ) + %02 Y () = 0, 0<t<T,
PTa) = Ja—y)™

The first order condition in the HJB equation gives us

ﬁ<t’x) = b{fy(tx,x) - Vw<t7x)}

and, inspired of the standard regulator problem, we now make the Ansatz (at-

tempted solution)

ft,z,y) = A®)z®+ B@t)y* + C(t)zy + D(t)x + F(t)y + H(2),
V(t,z) = a(t)z® + B(t)z + (1),

where all coefficients are deterministic functions of time. We now insert the
Ansatz into the HJB system, and perform an extremely large number of ex-
tremely boring calculations. As a result of these calculations, it turns out that
the variables separate in the expected way and we have the following result.

Proposition 11.1 For the time inconsistent regqulator, we have the structure

(63)-(64), where the coefficient functions solve the following system of ODEs.

Ay +2aA +20°A (2B + C — 2a)

By

Cy +aC

Dy +aD +b*D (2B + C — 2a) + 26> A(F — ) =
F, + b>CF — B3b*C

H; +V*(F - B)D + %A

1
at+2aa+2ab2(23—0—2a)+§b2(23+C—2a)2—a(23+C

)
—b* (2B +C) (2B + C — 2a)
By +af + % (2B + C — 2a) + 2ab® (F — ) + b* (2B + C — 2a) (F — 3)

—aF —b*F (2B +C —2a) —V* (F — 8) (2B + O)

et+b2ﬁ(F—ﬁ)+o2a+%b2(F—ﬂ)2—b2(F—ﬂ)F—o2C’—UQB
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With boundary conditions

AT)=3. BI) = 3. €)=,
D(T)=0, F(T) = 0, H(T)=0,
aT)=0, B(T) = 0, €T)=0

12 Conclusion and future research

In this paper we have presented a fairly general class of time inconsistent stochas-
tic control problems. Using a game theoretic perspective we have, in discrete as
well as in continuous time, derived a system of equations for the determination
of the subgame perfect Nash equilibrium control, as well as for the corresponding
equilibrium value function. The system is an extension of the standard dynamic
programming equation for time consistent problems, and we have studied sev-
eral concrete problems in some detail. I particular we have shown that for every
time inconsistent problem there is an corresponding time consistent problem,
which is equivalent in the sense that the optimal control and the optimal value
function for the standard problem coincide with the equilibrium control and the
equilibrium value function for the time inconsistent problem.
Some obvious open questions are the following.

e Prove existence for a reasonably general class of problems with infinite
horizon.

e Study (lack of) uniqueness for problems with infinite horizon.
e Does there exist an efficient martingale formulation of the theory?

e Is it possible to develop a convex duality theory for time inconsistent
problems?
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