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Abstract
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memory model with a constant order of integration around 0.4 cannot be rejected along the di¤erent
percentiles of the distribution, providing in this way strong support to the existence of long memory
in realized volatility from a completely new perspective.
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1 Introduction

There is growing interest in the �nance and economics literature on modelling dependence in the tails of

the conditional distribution of time series. The Quantile Regression (QR) theory introduced by Koenker

and Bassett (1978) provides a simple and convenient instrument to this end. This methodology, now

routinely implemented in market downside risk management and other applied areas, distinctively deals

with estimation and inference at di¤erent quantiles, allowing to address a wide range of hypotheses and

o¤ering new insights on the time-series properties of the data. For instance, Engle and Manganelli

(2004) show that daily conditional Value-at-Risk is a strongly persistent process. The reason is that

downside risk measures are mainly driven by volatility, which distinctively exhibits long-range depen-

dence at the daily frequency possibly generated by a fractionally integrated process. Similarly, Koenker

and Xiao (2004) report evidence of strongly persistent, yet heterogenous dynamics in U.S. short-term

interest rates along the deciles of the conditional distribution. The QR analysis reveals that the largest

autoregressive coe¢ cient varies signi�cantly from bottom to top quantiles, showing asymmetric pat-

terns ranging from stationarity to explosiveness which can be related to di¤erent policy strategies of

the Federal Reserve Board.

In this paper, we contribute to the extant literature by proposing a novel QR-based test to detect

long memory in the time domain. Long-memory (also referred to as fractionally integrated) models allow

for long-run dependence characterized by autocovariances that decay hyperbolically, thereby o¤ering

an intermediate case between the characteristic exponential decay of short memory and the in�nite

persistence of unit root processes. This class of models often explains convincingly the time-series

dynamics exhibited by many economic and non-economic variables. We propose a series of QR-based

tests for fractional integration that extend the Lagrange Multiplier (LM) testing procedure in Breitung

and Hassler (2002) and which allow us to address more general hypotheses than the standard unit

root case analyzed in previous QR literature; see, among others, Koenker and Xiao (2004) and Galvao

(2009). Furthermore, con�dence intervals of the long-memory coe¢ cient, exhibiting robust properties

to non-Gaussian features of the data, can readily be obtained by inverting these test statistics.

More speci�cally, this paper discusses the asymptotic theory for both individual and joint quantile

regression long memory tests (QRLM henceforth) under a fairly general class of errors. Individual

quantile tests are useful to address the fractional integration hypothesis at a speci�c quantile 0 < � < 1;

while joint tests involve sets of quantiles in closed subintervals of (0; 1). We formally show that the

asymptotic null distributions of these tests do not depend on the degree of integration nor other nuisance

parameters. Furthermore, and in sharp contrast to existing tests for the unit root hypothesis, the
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QRLM tests can be characterized by usual probability laws, such as the standard normal distribution.

Monte Carlo analysis shows that QR-based tests can yield power improvements over suitable OLS-based

alternatives and tend to o¤er more robust inference against observations drawn from heavy-tailed and/or

skewed distributions.

We use the QRLM tests proposed in this paper to formally address the existence of long-memory

patterns in di¤erent measures of realized variation of IBM, one of the most liquid and actively-traded

stocks in the world. These tests allow us to determine the order of fractional integration along the

di¤erent quantiles of the conditional distribution of the series, thereby addressing more robustly this

hypothesis and bringing completely new evidence to the �eld. The main conclusion from our analysis is

that there is su¢ cient regularity in this process such that the suitability of a long-memory model with

constant coe¢ cient slightly greater than 0:40 cannot be rejected. Therefore, according to this analysis,

the evidence of long-range dependence in realized volatility is caused by a long-memory model. Hence,

our paper contributes to the ongoing debate on whether realized volatility is really driven by a persistent

process or not providing new evidence that supports this hypothesis.

This paper can be related to di¤erent strands of previous research. First, it generalizes the unit-root

testing procedures put forward in the QR literature by proposing a test that can identify fractional

integration in the data. Previous papers in this �eld have exclusively focused on testing the unit-root

hypothesis. Our analysis is more general and nests this setting as a particular case. Second, our paper

extends reciprocally the fractional integration testing, traditionally focused on the conditional mean

analysis, towards a more general setting involving other aspects of the conditional distribution of the

data. The tests proposed in this paper are a direct extension of the Least-Squares (LS) based tests

proposed by Breitung and Hassler (2002) and further generalized in Demetrescu et al. (2008) and

Hassler et al. (2009). Finally, our paper is related to the empirical literature concerned with realized

volatility modelling; see, among others, Andersen et al. (2001, 2003), Barndor¤-Nielsen and Shephard

(2004), and Corsi et al. (2008). We introduce a new procedure to detect long-memory and provide

robust evidence supporting the existence of long-memory in realized variance.

The remainder of the paper is organized as follows. Section 2 contains the theoretical contribution

and lays out the QRLM testing procedures. Section 3 presents experimental evidence on the �nite

sample size and power performance of the tests in relation to suitable LS-based procedures. Section 4

applies the QRLM tests to characterize the extent of long-run dependence in realized variation of IBM

stock returns. Finally, Section 5 summarizes and concludes. A technical appendix collects the proofs

of the theorems stated in Section 4.
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2 Theoretical analysis

2.1 Assumptions and notation

Consider the fractionally integrated process,

(1� L)d+� yt = "t; t = 1; 2; :::; "s = 0 for all s � 0 (1)

where fytg is an observable variable, L denotes the lag operator, (d; �)0 is a real-valued vector, and

f"tg is an invertible short-memory process with speci�c properties that shall be laid out later in the

paper. For a pre-speci�ed value d; our main aim is to test the null hypothesis that fytg is fractionally

integrated of order d, denoted as FI(d), against the alternative FI(d+�), i.e., testing H0 : � = 0 against

H1 : � 6= 0: The standard unit-root case, d = 1; is encompassed as a particular case in this generalized

context.

Let f"t;dg be the series resulting from di¤erencing fytg under the null hypothesis, namely, "t;d =

(1� L)d yt; where the fractional di¤erence operator, �d = (1� L)d, is characterized by the formal

binomial expansion:

�d =
1X
j=0

�j (d)L
j ; with �0 (d) = 1 and �j (d) =

j � 1� d
j

�j�1 (d) ; j > 0: (2)

Given f"t;dg, de�ne the �ltered process x�t�1;d =
Pt�1
j=1 j

�1"t�j;d ; t = 2; :::; T: The particular form ofn
x�t�1;d

o
, characterized by an harmonic weighting of the lags of f"t;dg ; results from the expansion of the

polynomial log (1� L)d which features the partial derivative of the (Gaussian) log-likelihood function

of fytg under the null hypothesis. As a result,
n
x�t�1;d

o
is core in the construction of LM-based tests

under the Gaussian condition. More generally, we can use
�
"t;d; x

�
t�1;d

�0
to construct valid tests even

if data are not normally distributed. The main theoretical results put forward in this paper formally

hold under the following set of su¢ cient conditions.

Assumption 1. Let f"tg in (1) be an autoregressive process, A(L) "t = vt; with A(L) = 1�
Pp
j=1 ajL

j ;

0 � p <1; having all roots outside the unit root circle.

Assumption 2. Let vt � iid
�
0; �2

�
; with vt = 0 for all t � 0; E (jvtjr) < 1 for some r > 2; and a

cumulative distribution function F (z) with a continuous density, f (z), uniformly bounded away from 0

and in�nity on fz : 0 < F (z) < 1g.

These conditions are standard in the related literature; see, for instance, Koenker and Xiao (2004)

and Galvao (2009). The appendix provides some technical comments on the role played by these
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assumptions. Given the variables
�
"t;d; x

�
t�1;d

�0
introduced previously, consider the following auxiliary

regression in order to determine whether H0 : � = 0 holds true:

"t;d = �x
�
t�1;d +

pX
j=1

aj"t�j;d + vt; t = p+ 1; :::; T; (3)

where fvtg is a disturbance term with properties as described in Assumption 2. Breitung and Hassler

(2002) and Demetrescu et al. (2008) show that the squared t-statistic for H0 : � = 0 given the OLS

estimate b� from (3), denoted LMLS in the sequel, is asymptotically equivalent to the LM test for

H0 : � = 0: The LM test was shown to be e¢ cient under Gaussianity by Robinson (1994); see also

Tanaka (1999).

Under H0 : � = 0, x�t�1;d is (asymptotically) stationary and admits the causal representation x
�
t�1;d =Pt�1

j=0 'jvt�j�1, where
�
'j
	
j�0 is a squarely (but not absolutely) summable sequence independent of

the value of d, and LMLS is asymptotically distributed as a Chi-squared distribution with one degree

of freedom, denoted �2(1): Under the sequence of local alternatives � = c=
p
T , c 6= 0; the general

characterization "t;d =
�
c=
p
T
�
x�t�1;d+� + "t + op(1) holds true (Tanaka 1999; Demetrescu et al. 2008)

and it follows x�t�1;d = x
�
t�1;d+�+

�
c=
p
T
�Pt�1

j=1 j
�1x�t�1�j;d+�+op (1) ; with x

�
t�1;d+� =

Pt�1
j=0 'jvt�j�1:

As a result, � = c=
p
T captures the extent and the direction of the departure from the null, with

positive (negative) values of � indicating larger (smaller) orders of integration than d. Hence, testing the

fractional integration hypothesis on the basis of (3) ensures non-trivial power against local alternatives;

see Demetrescu et al. (2008).

Remark 2.1. The data generating process in (1) can be generalized to allow for a non-zero constant

term using the characterization yt = �+ (1� L)�d�� "t with � 6= 0: Robinson (1994) discusses a valid

procedure to consistently estimate � independently of d in this context; see also Demetrescu et al.

(2008, Prop.4). In particular, under H0; �dyt = ��d + "t, so � can be estimated consistently from the

linear regression of �dyt on the regressor bt;d =
Pt�1
j=0 �j (d) ; t = 2; :::; T; with �j (d) as de�ned in (2).

Under the null hypothesis, the residuals from this auxiliary regression correspond to the process f"t;dg.

Hence, for simplicity of notation and with no loss of generality, we can assume � = 0 in the sequel.
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2.2 Quantile regression analysis

Let Ft be the �-�eld generated by fvs; s � tg and denote Q"t;d(� jFt�1) as the conditional quantile of

"t;d for some probability � in (0; 1) : Then, under (3) ; it follows that

Q"t;d(� jFt�1) = �(�) + �x�t�1;d +
pX
j=1

aj"t�j;d = z
�0
t�1;d� (�) (4)

where � (�) = F�1(�); � (�)=(� (�) ; �; a1;:::; ap)
0, and z�t�1;d =

�
1; x�t�1;d; "t�1;d; :::; "t�p;d

�0
. Although

�(�) varies with � ; the remaining parameters remain �xed across quantiles, i.e., they are globally

identi�ed. Therefore, under H0 : � = 0; the slope coe¢ cient � in (4) equals zero at any quantile

� 2 (0; 1) : This property allows us to analyze whether H0 : � = 0 holds true at any arbitrary quantile

and, more generally, over an arbitrary closed set of quantiles in (0; 1). While LS-based tests exploit

the statistical information conveyed by the conditional mean, E ("t;djFt�1) ; the QR analysis allows us

to exploit the information in other distributional features, such as the conditional median and, more

generally, at di¤erent percentiles of the conditional distribution of the data, Q"t;d(� jFt�1). This testing

strategy may ensure inference exhibiting more robust properties and enhanced power, particularly, in

a non-Gaussian context.

2.2.1 Testing for fractional integration at individual quantiles

The estimation of the vector of parameters � (�) that characterizes the conditional quantile process

in (4) involves the optimization problem minb(�)2Rp+2
PT
t=p+1 �� ("t;d � z�0t�1;db (�)); where �� (s) =

s
�
� � I(s<0)

�
is the so-called �check�function, with I(�) denoting the indicator function taking value 1 if

the argument is true and 0 otherwise; see Koenker and Bassett (1978). Let b� (�) be the resultant vector
of estimates. The following Theorem introduces the asymptotic distribution of the scaled estimation

error
p
T
�b� (�)�� (�)� at a �xed quantile � under H0 and, hence, provides the formal basis to construct

QRLM tests. We use the standard notation �)�and �p!�to denote weak convergence and convergence

in probability, respectively, throughout the following theoretical statements.
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Theorem 2.1 Let fytg be generated according to (1), with Assumptions 1 and 2 holding true. Then,

under the null hypothesis H0 : � = 0, it holds for any �xed � 2 (0; 1) as T !1 that:

p
T
�b� (�)� � (�)�) N

�
0; � (1� �) s2(�)
�1

�
(5)

where s (�) = [f (�(�))]�1, and 
=limT!1T
�1PT

t=p+1E
�
z�t�1;dz

�0
t�1;d

�
, a �nite and invertible matrix.

Consequently,

LMQR(�) = T

"b� (�)b& (�)
#2
) �2(1) (6)

where b&2 (�) denotes a consistent estimate of &2 (�) = � (1� �) s2(�)!222; with !2ij denoting the ij-th

element of 
�1.

Proof. See the technical appendix.

Remark 2.2. The asymptotic variance of b�(�) is given by &2 (�) : Therefore, given consistent estimates
of the elements that characterize the standard error of b�(�), it follows readily from Theorem 2.1 that

the null distribution of the t-statistic for H0 : � = 0 in (4), namely, tQR (�) =
p
T b� (�) =b& (�) ; is

asymptotically standard normal. Consequently, we can construct either a pivotal test for one-sided

testing or, in analogy to least-squares LM-testing, a squared t-statistic for the two-sided alternative,

LMQR(�) =t
2
QR (�) ; which is asymptotically distributed as a �

2
(1) variate.

Remark 2.3. A consistent estimator of !222 can readily be obtained from the diagonal of the inverse

of the sample matrix T�1
PT
t=p+1 z

�
t�1;dz

�0
t�1;d. Following Siddiqui (1960) and Bassett and Koenker

(1982), the sparsity-related function s (�) can be estimated consistently under Assumptions 1 and 2 as

the sample di¤erence quotient �z�0d
�b� (� + hT )� b� (� � hT )� =2hT ; with �z�d denoting the sample mean

of z�t�1;d, and hT being a bandwidth parameter tending to zero at a suitable rate as the sample size

increases. Alternatively, the covariance matrix of b� (�) can be estimated consistently using kernel-type
estimators available in the nonparametric density estimation literature, or resampling methods; see

Koenker (2005) for a review.

Remark 2.4. Although the primary purpose of the QRLM test is to conduct inference for a pre-

speci�ed value of d, the procedure can also be used to construct con�dence intervals that include the

true value of d with 100 (1� �)% asymptotic coverage probability by inverting LMQR(�), as discussed

in Hassler et al. (2009). In particular, let d0 be the true value and let LMQR;�(�) denote the value

of the test statistic LMQR(�) when testing H0 : d = �; with � 2 �, a closed interval. De�ne
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D� =
n
� : Pr

h
�2(1) � LMQR;�(�)

i
� 1� �

o
; i.e., the subset of � for which the null hypothesis cannot

be rejected at the � signi�cance level. It follows that if D� is in the interior of �, then the probability

of d0 being within D� is at least (1� �). Thus, the con�dence interval can be constructed through

a grid-search process in �: Similarly, con�dence intervals can be constructed by identifying the non-

rejection region of tQR (�) when testing H0 against a two-sided alternative. We shall implement this

technique later in the empirical section.

Remark 2.5. A generalization of the procedure in the presence of unconditional heteroskedasticity

is immediate. Following Koenker (2005), it can be shown that
p
T
�b� (�)� � (�)� ! N (0;V (�))

if E
�
v2t
�
= �2t ; with �

2
t < 1 uniformly bounded. The asymptotic covariance matrix takes the

White-Eicker-Huber form V (�) = � (1� �)	�
�1	� ; with 	� denoting the limit in probability of

T�1
PT
t=p+1 z

�
t�1;dz

�0
t�1;d

�
f
�
Q"t;d(� jFt�1)

��
; see Powell (1991). This approach is similar in spirit to the

(conditional) heteroskedasticity-robust LM test for fractional integration in the LS context discussed

in Demetrescu et al. (2008) and Hassler et al. (2009). We shall implement both approaches in the

empirical section.

It is interesting to compare LMQR(�) to alternative tests in related literature. First, note that this

test is the QR analog of the LS-based test, LMLS ; in Breitung and Hassler (2002). While LS-based tests

exhibit optimality properties when innovations are normally distributed, they are no longer e¢ cient

under departures from such assumption. Consequently, LMQR(�) may be better indicated in realistic

settings in which innovations exhibit non-Gaussian features, such as excess kurtosis and skewness.

Second, LMQR(�) can be used to test for fractional integration, a more general hypothesis than the

standard unit-root case. Previous literature in QR has focused exclusively on the Dickey-Fuller (DF)

testing approach, so QRLM tests considerably generalize this setting.

It is worth discussing the similitudes and di¤erences with the DF test. For ease of exposition,

assume that Assumption 1 holds true with p = 0. Then, the DF test addresses H0 : d = 1 by testing

H0 : � = 0 in �yt = �+ �yt�1 + vt, with yt�1 =
Pt�1
j=1 "t�j . Similarly, H0 : d = 1 implies H0 : � = 0 in

"t;d = �+ �x
�
t�1;d + vt in our setting, with x

�
t�1;d =

Pt�1
j=1 j

�1"t�j . Therefore, the main methodological

di¤erence between these two procedures lies exclusively in the di¤erent weights used to construct the

right-hand side variable in the auxiliary regression. The harmonic weighting that characterizes our

approach ensures power to detect fractional alternatives in the generalized context studied here and,

furthermore, has major implications on the asymptotic null distributions of the tests. In particular,

note that the QR estimate of � in the DF equation is T -consistent and converges, once adequately
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scaled, to a mixture of the Dickey-Fuller and a standard normal distribution under Assumptions 1

and 2; see Koenker and Xiao (2004) and Galvao (2009). In contrast, as formally shown in Theorem

2.1, b�(�) is pT -consistent and converges to the standard normal distribution upon appropriate scaling.
Consequently, the DF approach provides a more powerful tool to test the unit-root hypothesis H0 : d = 1

as it builds on super-consistent estimates, but it cannot be used to test more general hypotheses.

2.2.2 Testing fractional integration over a set of quantiles

The QR setting provides a natural diagnosis tool to formally analyze whether a model with a constant

long memory coe¢ cient �ts the data across the quantiles of the conditional distribution. The central

idea is to address whether there is su¢ cient regularity in the data not to jointly reject H0 : � = 0 for a

constant value of d over the di¤erent quantiles of an arbitrary closed subinterval of (0; 1). The following

Theorem states the asymptotic distribution of two di¤erent, but related, testing procedures intended

for this purpose.

Theorem 2.2. Let T = [� ; � ] be a closed subset of (0; 1) of length � = ��� ; and consider an equidistant

partitioning � i = �+i�=T; i = 0; 1; :::; T . Let the random function ST (�) =
p
� (1� �)

p
T b� (�) =b& (�) ;

with sup�2T jb& (�) � & (�) j = op (1) ; and &2 (�) = � (1� �) s2(�)!222 as in Theorem 2.1 : Then, under

the assumptions of Theorem 2.1, it follows as T !1 that

KST = max
1�i�T

jST (� i) j ! sup
�2T

jB (�) j (7)

CMT =
X
1�i�T

S2T (� i) (� i � � i�1)!
Z
�2T

B2 (�) d� ; (8)

where B (�) is a standard Brownian Bridge.

Proof. See the technical appendix.

Remark 2.6 The limit distributions in (7) and (8) are truncated versions of the well-known Kolmogorov-

Smirnov and Cramér-von Mises distributions, respectively, which would arise when evaluating the

supremum or the integral over the [0; 1] interval. This serves as motivation to call the test statistics

accordingly. The limit distributions of KST and CMT are free of nuisance parameters and, therefore,

it is straightforward to obtain critical values by direct simulation of the functionals involved given the

arbitrary choice of T . For instance, for T = [0:1; 0:9] ; the 95% critical values of KST and CMT are

1.35 and 0.44, respectively.
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3 Finite sample analysis

In this section, we evaluate experimentally the small sample properties of the individual and joint-

quantile QRLM test statistics previously introduced. Following Koenker and Xiao (2004) and Galvao

(2009), we �rst analyze the empirical size and power of the individual QRLM test LMQR(�) at � = 1=2

(conditional median). To this end, we consider a data generating process (DGP) characterized by

(1�aL)(1�L)d+�yt = "t; t = 1; :::; T; with a 2 f0; 0:5; 0:75g ; T 2 f100; 250; 1000g ; and � 2 [�0:3; 0:3]:

Since the unit-root is the leading case studied in the QR literature, we set the (unknown) value of d to

one, and test H0 : d = 1 given the di¤erent values of �: Consequently, the frequencies of rejection for

� = 0 are informative of the empirical size, whereas the cases � 6= 0 allow us to characterize the power

function. As shown in the theoretical section, the null distribution of LMQR(�) does not depend on the

particular value of d, while power is mainly dictated by the magnitude of �; as discussed previously. We

stress, therefore, that this particular choice d = 1 does not imply any loss of generality of our analysis.

According to Assumption 2, we assume that f"tg are i.i.d. innovations drawn from a Student-t

distribution with v 2 f2; 3; 1000g degrees of freedom. The case v = 1000 corresponds to the Gaussian

distribution, whereas the remaining cases are characterized by heavy-tailed distributions. For v = 2;

the tails of the Student-t distribution have such a slow decay that "t has in�nite variance, a possibility

not formally covered by the asymptotic theory discussed previously. Since the Student-t distribution is

continuous in the degrees of freedom parameter and veri�es E (j"tjv+�) < 1 for any arbitrarily small

� > 0; we can think of v = 2 as a �limiting�case corresponding to the formal bound of our theory. This

is a usual approach in the robust literature.

The QRLM test is implemented using a Gaussian kernel-based estimator of the covariance matrix.

Simulations are conducted considering 5000 replications and the usual 5% signi�cance level. To evaluate

the relative behavior of the QRLM test, we also address the performance of the LS-based test, LMLS ;

introduced by Breitung and Hassler (2002): This test is e¢ cient in the Gaussian context and, like

the QRLM test, is formally valid for v > 2. Table 1 presents the rejection frequencies of the these

tests under the di¤erent DGPs considered, focusing on the simple i.i.d. case (a = 0) and on a more

general context in which errors exhibit stationary �rst-order autoregressive dependence (a = 0:75). For

conciseness, we omit the results for a = 0:5, but note that these results are available upon request.

[Insert Table 1 around here]

We �rst discuss the main results for the i.i.d. case (a = 0): Both the LMLS and LMQR(�) test

tend to show empirical sizes close to the 5% nominal level even in the small sample T = 100, and
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increasing power on j�j and/or T , thereby showing the consistency of both procedures. As expected,

the Gaussian environment provides the necessary conditions for optimality of LMLS , which outperforms

in terms of �nite-sample size and power. Since LMLS is based on LS estimates, which involves matrix

algebra, it tends to present more stable size in small samples than LMQR(�); which involves numerical

optimization. On the other hand, when innovations are drawn from heavy-tailed distributions, LMLS

tends to be undersized as kurtosis (directly related to the degrees of freedom parameter) increases.

Interestingly, a considerable degree of leptokurtosis is necessary to generate sizeable departures in this

test. The di¤erences between v = 1000 and v = 3 are not particularly dramatic in terms of size-power

distortions in any of the sample lengths analyzed, so the LMLS test seems to exhibit considerable

resilience against heavy-tailed distributions.

Nevertheless, even if heavy-tailed distributions do not cause massive distortions, LS-based tests are

no longer optimal, and alternative testing approaches may lead to more e¢ cient results. Indeed, the

QRLM tests can yield important gains in power with respect to the LS-based test while still ensuring

approximately correct size in �nite samples. In particular, for v = 2; LMQR(�) su¤ers a similar

undersizing e¤ect as LMLS , but on the other hand exhibits power which is roughly twice as large

as that of the LS test, and even larger for certain DGP con�gurations. For instance, for v = 2 and

� = �0:1; the power of LMLS in the sample with T = 100 (T = 250) observations is approximately

17:10% (46:16%), whereas LMQR(�) presents rejection frequencies of 46:2% (87:12%); respectively.

The empirical size of LMLS and LMQR(�) is similar in both scenarios (3:62% and 3:68% for T = 250,

respectively), so the sheer di¤erence in power in this highly non-Gaussian environment cannot merely

be attributed to di¤erences in empirical size. The relative gains in power are asymmetric and tend to

be much larger in the stationary region (� < 0) than in the explosive direction (� > 0) : This pattern

tends to disappear as v approaches 2, for which power shows similar patterns around the origin.

We now turn our attention to the context in which the DGP exhibits autoregressive short-run

dependence with a = 0:75. In this case, both the QRLM and LS tests are computed using an auxiliary

regression augmented with one lag of the dependent variable. As in the i.i.d. case, the tests show

empirical sizes that approach the nominal level as the sample size increases, and consistency to reject

the null under the sequence of alternatives analyzed. Table 1 shows that, for fairly small samples

such as T = 100; the QRLM test shows signi�cant oversizing e¤ects in relation to the i.i.d. context,

particularly, under Gaussian conditions, which nevertheless are quickly corrected as the sample length

increases. As in the i.i.d. experiment, both QR- and LS-based tests tend to be conservative when

v = 2: In terms of power, it is evident that both tests su¤er important power reductions in relation to
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the i.i.d. context stemming from the augmentation required to ensure correct size. As expected, the

QR-based test shows considerably improved power over its LS alternative as the degree of leptokurtosis

increases, particularly for negative values of �: For positive values, the gains are smaller than in the i.i.d.

case, and a considerable degree of leptokurtosis is necessary to beat the LS-based procedure. These

asymmetric patterns in power as a function of � are data-dependent and, hence, di¤erent conclusions

may arise when considering di¤erent parameter con�gurations. For instance, for a = 0:5 (results not

reported), the power of both tests is characterized by a strong asymmetric pattern, but in this case the

alternatives � < 0 are easier detected than their counterparts � > 0, a pattern which was already noted

by Demetrescu et al. (2008) in the LS context.

In addition to the individual QRLM test, we analyze the consistency of the joint QRLM test to

reject a false long-memory model. To this end, we consider a DGP characterized by (1� L)d+�t yt = "t;

t = 1; :::; T; T 2 f100; 1000g ; and "t being driven by the Student-t process with i.i.d. observations

and v 2 f2; 3; 1000g degrees of freedom, as discussed previously. In this model, �t � iidN
�
0; 
2

�
is a

noise term independent of "t, with 
 controlling the variability of the process. For 
 = 0; fytg is FI(d);

however, for 
 > 0, fytg is generated from a model with time-varying, random long-memory coe¢ cients

dt = d + �t centered around d; with 
 controlling the extent of dispersion around this coe¢ cient. In

this case, the observable process is not a fractionally integrated model as de�ned in Section 2 and,

consequently, the null hypothesis H0 : d = d should be rejected. We set d = 1=2 in this experiment and

analyze the average rejection frequencies of the KS test computed over the percentiles in the intervals

T1 = [0:4; 0:6] and T2 = [0:1; 0:9] ; with 
 taking values in [0; 0:3] : For 
 = 0 the experiment provides

information about the empirical size of the joint tests, while values 
 > 0 allow us to characterize their

power in �nite samples.

[Insert Table 2 around here]

Table 2 reports the main results of this experiment. For 
 = 0; the KS test shows some size

distortions in the small sample, which nevertheless tends to disappear as the sample length increases.

Consequently, using the joint test to construct a con�dence interval for the �xed coe¢ cient d = 1=2;

following the strategy discussed in Remark 2.4 will deliver intervals with correct coverage ratio in large

samples under the set of assumptions considered. For values 
 > 0; the test rejects the false null with

an increasing probability on 
 and/or the sample length T . Consequently, the KS test can consistently

reject the suitability of a fractionally integrated model. As in the case of the individual QRLM test,

the power function of the joint test is a¤ected by sample-dependent aspects related to the distribution

of the data, and tends to be greater under heavy-tailed distributions.

12



In addition to the previous experiments, we further analyzed several generalizations. For the QRLM

tests at � = 1=2, we analyzed the �nite-sample statistical properties using random innovations drawn

from Hansen�s Skewed-t distribution. This distribution is characterized by two parameters that control

for excess kurtosis and skewness. The set of su¢ cient conditions in Assumption 2 imposes only mild

restrictions on the distribution of the data that do not require symmetry, a restriction often required

in the robust literature. Consequently, the main conclusions when permitting skewness in addition to

excess kurtosis are completely similar to those reported previously and show that the QR-test leads

to more e¢ cient testing than LS-based tests when innovations are drawn from heavy-tailed and/or

skewed distributions. These results are omitted for saving space, but available upon request. Similarly,

we analyzed the performance of the individual tests building on covariance-matrix estimates based on

resampling methods, as suggested in Koenker (2005), which showed a similar performance. These results

are available in the working-paper version of the paper. Finally, we analyzed the power of the joint

test to detect alternatives characterized by other mechanisms that generate time-varying values of the

long-memory coe¢ cient. In particular, we focused on values of dt generated from (i) a random sample

of uniform observations in [0; 1] ; (ii) regime-switching models; (iii) stationary AR(1)-type dynamics,

and (iv) pure random-walk based dynamics. The main evidence from this analysis is qualitatively

similar to that discussed previously and shows the general consistency of the joint test. Those results

are not presented, but available upon request.

In summary, the main picture that emerges from the Monte Carlo analysis is that both the individual

and joint QRLM tests proposed in this paper are well-suited for empirical purposes. They tend to

exhibit approximately correct size even in small samples, with �nite-sample departures from the nominal

level that vanish as the sample is allowed to grow. The QR-based tests can consistently reject the

null hypothesis under the alternative and, as discussed in the related literature, can improve power

performance over LS-based alternatives when the data is driven by non-Gaussian distributions with

large excess kurtosis and/or skewness. We shall use these procedures to address the existence of long-

memory patterns in realized volatility in the following section.

4 Long-run dependence in realized stock volatility

In this section, we analyze the long-run behavior of daily realized volatility of IBM, one of the most

liquid and frequently-traded securities in the U.S. stock exchange. Realized volatility is a theoretically

consistent estimate of integrated volatility based on sums of intraday returns; see, among others, An-
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dersen et al. (2001, 2003). Our interest in this process is motivated by the well-established fact that

realized volatility exhibits persistent autocorrelations that are consistent with long memory dynamics.

There is an ongoing debate about the sources of long-range dependence in this literature, since at the

theoretical level there is little consensus on the mechanism generating this phenomenon.

4.1 Data and preliminary evidence of long memory

We record continuously-compounded returns of the IBM stock sampled regularly over 5-minute intervals

from 9.30 a.m. to 4.00 p.m., totalling 78 intraday observations. The initial sample we analyze covers

the period from 04/01/1993 to 31/05/2007, totalling 3; 630 trading days. We shall focus on an extended

sample, including the �nancial crisis period, as a robustness check. Using these series, we compute two

basic measures of realized variation. First, we consider daily realized volatility, de�ned as the square

root of the sum of squared 5-minute log-returns over the day, �RV (t) =
hP78

n=1 r
2
(n);t

i1=2
. Additionally,

we compute the unnormalized realized absolute variation (or �rst-order power variation) of returns,

de�ned as the sum of absolute-valued returns over the day, �RPV (t) =
P78
n=1 jr(n);tj: Under certain

conditions, this measure is robust to jumps; see Barndor¤-Nielsen and Shephard (2004) for details. As

customary in this literature, we analyze the long-run properties of realized variation focusing on the

logarithmic transformation of these variables, i.e., log-realized volatility, log �RV (t) ; and log-realized

power variation, log �RPV (t) ; see Andersen et al. (2003). Figure 1 presents plots of these measures

over the sample period considered.

[Insert Figure 1 around here]

Table 3 provides a summary of the usual descriptive statistics of these series. Daily realized volatility

�RV (t) typically exhibits a considerable degree of leptokurtosis and right skewness due to the in�uence

of the jump component in the DGP of speculative returns. For IBM, the sample kurtosis over the period

under analysis is 102:81, from which the assumption of normality is largely rejected. Being less sensitive

to outliers, realized power variation �RPV (t) shows a more moderate degree of kurtosis (30:03), which

is still large enough to strongly reject the hypothesis of normality. On the other hand, the logarithmic

transformation removes partially the in�uence of outliers and considerably reduces the leptokurtosis

of the resulting variables. The series log �RV (t) and log �RPV (t) exhibit kurtosis coe¢ cients of 5:27

and 3:44; respectively. Since skewness is considerably attenuated as well, the log measures of realized

variation exhibit an unconditional distribution closer to the Gaussian distribution. However, normality

is still rejected on the basis of standard testing procedures, such as the Jarque-Bera test, owing mainly
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to excess kurtosis.

[Insert Table 3 around here]

The most important stylized feature of realized variation measures is a slowly decaying autocor-

relation pattern, a distinctive feature of long-memory processes. This phenomenon is clearly visible

in Figure 2, which shows the sample autocorrelation function of the series up to the 400th lag. Even

though the �rst-order correlation of �RV (t) is not particularly sizeable (0:276), the subsequent corre-

lations remain highly signi�cant. Distant observations, which span almost two years of trading days,

remain positively correlated; see Table 3 for further details. A similar pattern appears in the other

measures of daily variation, although the �rst-order correlation tends to be larger for these series.

Previous literature argues that this pattern of temporal dependence is caused by a fractionally

integrated process with long-memory coe¢ cient 0 < d < 1; see, among others, Andersen et al. (2001,

2003). Together with the usual descriptive statistics, Table 3 reports point estimates of the long-memory

parameter obtained with semi-parametric estimators in the frequency domain. In particular, the table

reports the Geweke and Porter-Hudak (1984) estimator, bdGPH , and the exact local Whittle estimator
suggested by Shimotsu and Phillips (2005), bdELW . According to standard practice, we compute these
estimates using a bandwidth parameter mT = [T

0:6]; with [�] denoting the integer argument. Table 3

also reports the 95% con�dence intervals for d based on the asymptotic distribution of these estimators,

noting that
p
mT

�bdGPH � d� ) N
�
0; �2=24

�
and

p
mT

�bdELW � d
�
) N (0; 1=4). According to

these estimates, realized measures in levels tend to exhibit smaller values of d than their logarithmic

counterparts, which is consistent with biases originated by excess kurtosis; see Haldrup and Nielsen

(2007). Although all estimates are signi�cantly smaller than one, all con�dence intervals, except for

one, include values of d in the nonstationarity region (d � 0:5).

[Insert Figure 2 around here]

4.2 Quantile regression analysis

Consistent with previous literature, the preliminary analysis reported in Table 3 suggests the existence

of long memory patterns in the di¤erent measures of realized variation. The QRLM tests introduced

in this paper can shed further light on the empirical properties of these series. The QR approach can

naturally be motivated in this context by two main considerations. First, the non-Gaussian features

of daily volatility discussed previously may cause biases in the semi-parametric estimates of the long-

memory coe¢ cient, as discussed by Haldrup and Nielsen (2007). Hence, alternative procedures which
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exhibit more robust properties against in�uential observations may produce more accurate inference in

this context. Consequently, the QR testing at the 50th percentile seems a natural approach. Second,

the QR methodology allows us to analyze the general suitability of a fractionally integrated �lter with

constant parameter d. If the realized volatility is truly generated by such a process, we should be able

to identify its characteristic coe¢ cient along the di¤erent quantiles of the conditional distribution of

the series. Hence, the QR analysis allows us to address a more robust discussion on the properties of

realized volatility and bring completely new empirical evidence to this �eld.

The empirical analysis is carried out in the following terms. At any of the quantiles � 2 Q;

Q = f0:1; 0:11; :::; 0:9g, we run the quantile regression (4) and compute the QRLM t-statistic tQR (�)

for H0 : � = 0 in (4) given H0 : d = �; with � 2 D; D = f0; 0:01; :::; 1g. This analysis attempts to provide

a detailed examination of the existence of long-memory patterns across the quantiles of the conditional

distribution for di¤erent long-memory coe¢ cients. Following standard practice, we exclude top and

bottom quantiles from Q owing to statistical di¢ culties of the QR methodology in accurately dealing

with inference at extreme quantiles. We compute t-statistics rather than squared t-statistics because the

sign of b�(�) is informative about the sign of �. More speci�cally, we compute tQR (�) after accounting for
the likely possibility of a non-zero constant mean in the series, using the procedure described in Remark

2.1. Given the resultant series, the auxiliary regression is augmented with p lags of the dependent

variable according to the rule p =
h
4 (T=100)1=4

i
. As discussed by Demetrescu et al. (2008, 2011),

data-driven methods of lag-length selection fail to ensure correct empirical size in long-memory testing,

whereas deterministic rules, such as Schwert�s rule, manage to keep empirical size close to the nominal

level. The standard error of b� (�) is computed based on the estimator proposed by Powell (1991) seeking
to obtain robustness against potential heteroskedasticity in the data, as discussed in Remark 2.5. We

use a Gaussian kernel to estimate the density of the data with deterministic bandwidth parameter, hT ;

set according to the rule
�
0:3min fb�u; IQR (bvt) =1:34gT�1=5�, where IQR (�) denotes the interquartile

range. For completeness of analysis, we also compute the LS-based LM test with a covariance matrix

estimate robust to unknown (conditional) heteroskedasticity as in Demetrescu et al. (2008), using the

same augmentation criterion described previously.

As underlined in Remark 2.4, the QRLM testing procedure allows us to construct con�dence intervals

for d which are characterized by the non-rejection region of the tests involved. Thus, at any � 2 Q, we

construct 95% and 99% con�dence intervals for d; denoted as CI95% (dj�) and CI99% (dj�) ; respectively.

In addition, we compute the KS and the CM tests in Theorem 2.2 to analyze whether H0 : d = �,

� 2 D, applies uniformly over all quantiles comprised in the intervals T1 = [0:4; 0:6] and T2 = [0:1; 0:9] :
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While T1 analyzes the suitability of any speci�ed value of d at the center of the distribution, T2 focuses

on the whole distribution after excluding top and bottom quantiles.

4.2.1 Long memory in logarithms of realized volatility

For simplicity of exposition and owing to space constraints, we focus on the log realized volatility series

(e.g., Andersen et al. 2003), noting that a complete discussion is available in the accompanying working

paper; see Hassler et al. (2012). Tables 4 and 5 present the main results from the QRLM analysis for

log�RV (t) and log �RPV (t) ; respectively. In these tables, Panel A reports the values of tQR (�) on the

subset H0 : d = �i; �i 2 f0; 0:1; :::; 1g and deciles � 2 f0; 1; 0:2; :::; 0:9g for ease of exposition; as well as

the con�dence intervals CI95% (dj�) and CI99% (dj�) ; the (conditional) heteroskedasticity-robust LMLS

statistic of Demetrescu et al. (2008), and the con�dence-interval estimates for d based on this test.

Similarly, Panel B reports the KST and CMT test statistics for joint hypotheses as well as 95% and

99% con�dence intervals for d based on the non-rejection region of these tests.

[Insert Tables 4 and 5 around here]

To save space, and since results are entirely similar, we discuss the main evidence for the analysis

on log�RV (t) ; referring the interested reader to the companion paper for an extended discussion; see

Hassler et al. (2012). Some features are worth discussing in detail. First, the QR analysis at the

conditional median (� = 1=2) strongly rejects the hypothesis that daily log realized volatility is purely

driven by either stationary short-run dynamics (d = 0) or a unit root process (d = 1). In particular,

the 95% con�dence interval for d at this quantile is [0:38; 0:53]; mostly supporting the existence of

(stationary) long-range dependence. Similarly, the LS-based test LMLS rejects both FI(0) and FI(1)

dynamics, although it yields slightly larger con�dence intervals for the long-memory coe¢ cient which

are shifted to the right. For instance, the 95% con�dence interval is [0:45; 0:60]. Note that these

estimates are remarkably similar to the frequency domain-based semiparametric estimates reported in

Table 3.

Second, the analysis of tQR (�) computed along di¤erent quantiles allows to reach two main conclu-

sions. On the one hand, the individual QRLM tests always �nd strong statistical evidence of long-range

dependence, since the con�dence intervals for d always include values strictly greater than zero and

smaller than one at any � 2 Q. On the other hand, there is an upward trend in the con�dence intervals

such that both their central value and their amplitude tend to increase with � . This phenomenon is

clearly visible in Figure 3, which shows the central values dcentral : arg infd jtQR (�) j for which tQR (�)
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is closer to zero (i.e., the values of d for which we obtain maximum sample evidence for the null hy-

pothesis given �) as well as 95% and 99% con�dence bands. The upward trend is hardly noticeable

for quantiles below the median since the con�dence intervals tend to be very stable. For instance,

CI95% (dj�) = [0:31; 0:41] at � = 0:1; just slightly smaller than that at � = 1=2 indicated above. While

this pattern still holds for quantiles at the central deciles, a stronger diverging e¤ect is evident for

percentiles belonging to the upper quartile. For instance, CI95% (dj�) = [0:56; 0:83] at � = 0:9; so most

of these values are above the upper limit of CI95% (d j� = 1=2); see Table 4. The amplitude of the

con�dence intervals shows a similar shifting pattern as a function of � : It tends to remain steady for

quantiles in the lower tail and center of the distribution, but largely widens at top deciles. Note, for

instance, that the size of CI95% (dj�) at � = 9=10 is almost three times larger than that at � = 1=10:

[Insert Figure 3 around here]

Although most of the observations at the lower deciles and center of the distribution seem to be

driven by a model with common long-memory coe¢ cient, there is a considerable degree of parameter

uncertainty for observations corresponding to the largest levels of realized volatility. In this context,

the QRLM joint tests provide a valuable tool for disentangling formally whether there is su¢ cient

regularity in favour of a constant long-memory parameter model. For quantiles in the T1 central area,

the KS and CM tests formally show that values around d = 0:4 cannot be rejected. Similarly, for

quantiles in the extended range T2= [0:1; 0:9] ; none of the joint tests can reject the null hypothesis of

a constant long-memory parameter model for values of d around that level; see Tables 4 and 5, Panel

B, for details.

Paralleling the strategy used in the individual quantile analysis, we can construct con�dence intervals

for the globally admissible value of d by identifying the non-rejection region of the KS and CM tests.

The resulting con�dence intervals, denoted generally as CI100(1��)% (djT ) with T representing either

T1 or T2, respectively, are reported in Panel B. According to these estimates, the CI95% (djT2) for d

given by the KS and CM tests are [0:44; 0:45] and [0:41; 0:42] ; respectively. Consequently, the joint

analysis across quantiles does not reject the suitability of a fractionally integrated model with constant

long-memory parameter driving the long-run of logarithmic measures of daily integrated volatility. The

range of admissible values is slightly greater than 0:4, the value around which previous literature tends

to identify the long-memory coe¢ cient in daily realized volatility time series. Andersen et al. (2003)

refer to this as the �typical value�in their study. This estimate suggests that the long-run component

of realized volatility is driven by a strongly persistent, yet stationary, process. Similar results hold for

the measure of log-realized power variation.
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In contrast to log-realized measures, the analysis of the variables in levels (not reported here),

strongly rejects the existence of a fractionally integrated model with constant parameter. Stated more

precisely, �ltering either �RV (t) or �RPV (t) with a fractionally integrated model does not su¢ ce

to render stationary ARMA-type innovations uniformly over the quantiles of the distribution. This

feature is not surprising, because neither a fractionally-integrated nor a stationary short-run model can

simultaneously deal with the regimes of sudden volatility bursts (driven by the jump component of

returns) and low or normal volatility which characterize the dynamics of these variables and which are

perfectly visible in Figure 1. The logarithmic transformation reduces the heterogeneity of the series

and enables the identi�cation of the long-memory coe¢ cient in the QR setting.

The main results from the QR analysis suggest that a fractionally integrated model with a con-

stant long-memory coe¢ cient in (0:4; 0:5) drives the long-term component of log realized volatility and

power variation, rendering short-run innovations stationary. This evidence does not necessarily imply

that the log transform completely eliminates all the nonlinear features of the data. In fact, individual

quantile based QRLM tests at top deciles of log �RV (t) and log �RPW (t) suggest that these series may

be generated by a time-series process with characteristics di¤erent from those that drive the remaining

observations. The critical point from our analysis, however, is that there is su¢ cient regularity for

the diagnosis-type analysis based on the QRLM tests to conclude that the sample is driven by a frac-

tionally integrated model with constant long-memory parameter. Consequently, a remarkably robust

picture emerges from the overall analysis carried out in this paper, since these results essentially agree

with the results based on least-squares LM testing and frequency-domain semi-parametric estimation.

The overall evidence from this paper, therefore, provides support to the stylized feature of long-range

dependence of realized volatility discussed in previous literature.

4.3 Robustness checks

A) Conditional heteroskedasticity

Daily observations of �nancial variables characteristically exhibit time-varying conditional het-

eroskedasticity. The conditional variance of log-realized volatility is time-varying and can be theo-

retically related to the so-called quarticity, a process that can be estimated consistently by integrat-

ing fourth-order powers of intraday returns over the day; see Corsi et al. (2008). However, dealing

with conditional heteroskedasticity in quantile-regressions is far from trivial owing to theoretical dif-

�culties. In particular, the volatility process must be speci�ed parametrically (so inference becomes

model-dependent), and the parameters that characterize the conditional mean and volatility processes
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jointly estimated in a non-linear quantile regression, since they both feature the conditional quantile.

In this context, the asymptotic covariance matrix of the parameter estimates cannot be shown to be

well-de�ned uniformly on the parameter space, so the problem of how to conduct inference in this

generalized context is far from trivial and, to the best of our knowledge, has not been solved yet.

Owing to these di¢ culties, the papers that deal with QR analysis on �nancial series either do not

approach time-varying second-order moments (e.g., Gaglianone et al. 2011) or use a suitable proxy

of this latent process in a location-scale model; see, for instance, Adrian and Brunnermeier (2011)

and López-Espinosa et al. (2012) for recent examples. The testing strategy adopted in section 4.2

corresponds to the former approach. Nevertheless, since the evidence from the QR analysis in this

paper is complemented with other test statistics, we can argue that the main conclusions from this

analysis are not a¤ected or driven by (neglected) conditional heteroskedasticity. In particular, note

that the LM test in Demetrescu et al. (2008) builds on a White-Eicker-Huber estimator of the as-

ymptotic covariance matrix which ensures robustness against unknown conditional heteroskedasticity.

The analysis in section 4.2 shows that the individual QRLM con�dence intervals for d at � = 1=2;

namely, CI100(1��)% (dj� = 1=2) ; are not markedly di¤erent from the con�dence intervals based on this

procedure. As discussed in the Monte Carlo section, the QR- and LS-based tests for long memory

at the conditional median and mean can exhibit similar properties in large samples provided mild

departures from the Gaussian assumption. The important point to note here, however, is that the

similitude between the QR-based estimates and the estimates of a procedure robust to conditional het-

eroskedasticity implies that CI100(1��)% (dj� = 1=2) cannot be largely a¤ected by neglected conditional

heteroskedasticity. Furthermore, since the joint con�dence intervals CI100(1��)% (djT ) ; T 2 fT1; T2g ;

are necessarily subsets of CI100(1��)% (dj� = 1=2) if d holds constant across quantiles, we can realisti-

cally argue that neglected conditional heteroskedasticity is unlikely to have a major qualitative in�uence

on the conclusions discussed previously.

As an additional robustness check, we adopt a location-scale modelling approach, augmenting the

conditional quantile equation (4) with an observable proxy to which the volatility of the dependent

variable is likely related, namely, Q"t;d(� jFt�1) = z�0t�1;d� (�) + 
qt; with qt = log
hP78

n=1 r
4
(n);t

i
: The

logarithmic transformation is used to smooth the outliers that arise from raising returns to the fourth-

order power. Whereas this approach may not be undisputable, it allows us to shed further light on the

robustness of the main conclusions obtained previously. A more precise analysis constitutes perhaps an

interesting topic for future research.

[Insert Figure 4 around here]
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For simplicity, we summarize the main outcomes of this analysis graphically focusing on the log �RV (t)

time series. To this end, Figure 4 shows the KST2 values for given values d 2 D reported in the previous

section, which are confronted with the corresponding values of the KST2 test statistic computed from

the location-scale model. Figure 4 also shows the asymptotic critical values of the test at the 95% and

99% con�dence level in continuous and dotted horizontal lines, respectively. Note, for instance, that

the values of d for which KST2 is below those critical values de�ne the non-rejection region of KST2
and, hence, feature the con�dence intervals for d based on this testing approach, i.e., CI95% (djT2) and

CI99% (djT2). The analysis shows that the KST2 test statistics in the location-scale quantile regression

take values below those in the non-augmented setting. The most noticeable e¤ect is that the con�dence

intervals for d widen, particularly in the upper tail, and now include values in the nonstationary region;

for instance, CI95% (djT2) = [0:39; 0:71]. Larger con�dence intervals are the consequence of greater

parameter uncertainty, which is not particularly surprising in view that we are using a crude volatility

proxy in the approach. Nevertheless, CI95% (djT2) is now even closer to the 95% con�dence interval

obtained by heteroskedasticity-robust LS-based LM test, namely, [0:45; 0:60] (see Table 1), suggesting

that the proxy variable used in this analysis is not unreasonable.

In spite of these di¤erences, the main conclusions drawn in section 4.2 remain unaltered, as expected

from the previous considerations. Whereas both the FI(0) and FI(1) hypotheses are strongly rejected

in the location-scale model, the QRLM tests support the existence of fractional integration dynamics

with a constant value of d �tting the data along the di¤erent quantiles of the conditional distribution.

Although the interval now includes a wider set of values in the nonstationary region, it is a remarkable

fact that the minimum value of KST2 (i.e., the value which provides maximum evidence for the null) is

the the same in both approaches, namely, d = 0:45. Consequently, the conclusions drawn initially do

not seem to be a¤ected in a major way by the existence of time-varying conditional heteroskedasticity.

B) Long memory and the �nancial crisis

We extend the sample analyzed previously to span the period from 04/01/1993 to 31/05/2012, a total

of 4,891 daily observations. This period includes the �nancial crisis, in which market volatility increased

considerably over the average level of previous years as a consequence of the global uncertainty. This

issue suggests the potential existence of structural breaks or other forms of nonlinear e¤ects associated

to this event in the dynamics of realized volatility measures. The main conclusions of the analysis in

section 4.2, being based on a sample that ends before the crisis, are not spuriously driven by neglected

breaks or nonlinearities related to this episode. By analyzing an extended sample including this period,

we can address the robustness of these results and, furthermore, characterize the e¤ects of the �nancial
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crisis on the estimates of the long-memory coe¢ cient.

[Insert Figure 5 around here]

Figure 5 confronts the values of the KST2 test statistic computed over the sub-sample 04/01/1993

to 31/05/2007, analyzed in Section 4.2, to the corresponding values of this test computed over the

extended sample. The heterogeneity associated to the episode of the �nancial crisis increases parameter

uncertainty in the total sample, widening the amplitude of the con�dence intervals CI100(1��)% (djT ) for

d. Furthermore, it generates stronger evidence of nonstationary dynamics, shifting CI100(1��)% (djT ) to

the right. The global con�dence intervals for d are now CI95% (djT2) = [0:45; 0; 63] and CI99% (djT2) =

[0:42; 0:66] ; and the smallest value of the KST2 test statistic is achieved at d = 0:52: This evidence

largely agrees with the results of the LS-based LM test computed over the extended sample, which

generates a 95% con�dence interval for d given by [0:51; 0:68], and the results of the semi-parametric

estimates in the frequency domain, which now generate larger point-estimates for d; namely, bdGPH =
0:66 and bdELW = 0:60; with right-shifted 95% asymptotic con�dence intervals given by [0:56; 0:76] and

[0:52; 0:68]; respectively.

This evidence suggests that including the �nancial crisis period in the sample leads to greater

evidence of nonstationary dynamics according to any of the di¤erent testing procedures considered.

This feature is consistent with the inclusion of heterogenous data in the sample being generated by

a di¤erent generating process. Nevertheless, as in the pre-crisis sample, the QRLM analysis and the

alternative testing procedures for long memory largely reject both the FI(0) and FI(1) hypotheses, but

cannot reject that log �RV (t) is driven by a long memory model. Furthermore, and in spite of greater

global evidence of nonstationary long-range dependence, the QRLM analysis still cannot reject that

a stationary long-memory model with constant coe¢ cient slightly greater than d = 0:4 underlies the

total sample analyzed.

5 Concluding remarks

In this paper, quantile regression based tests against integer or fractional integration at di¤erent quan-

tiles have been introduced and discussed. The theory provided in this paper allows for more general

forms of hypothesis testing, by enabling inference involving the degree of persistence to be carried out

at di¤erent individual quantiles, or over sets of quantiles.

A distinctive property of the LM-type statistics proposed in this paper is that their null distributions

converge to a standard normal distribution or simple transformations of this, such as a Chi-squared
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distribution. Augmented versions of these tests are asymptotically robust against weakly-dependent

errors under quite general conditions, and exhibit good statistical performance in samples of moderate

size. This makes the class of QRLM test procedures introduced in this paper a valuable tool to address

the order of integration of a time-series, particularly, in a non Gaussian context. LS based techniques

have traditionally been preferred over alternative approaches because of their good statistical properties,

simplicity and computational tractability. However, there are practical contexts, such as the realized

volatility case studied in this paper, in which LS no longer necessarily provide optimal estimates, and

the properties of the resulting tests can largely be improved by applying alternative procedures, such

as quantile regressions. The test proposed in this paper can readily be computed together with its

LS counterpart and signi�cance evaluated on the basis of the same critical values, thereby providing

standard and robust inference on the extent of long-run dependence of the series.

Using individual and joint QRLM tests, we have analyzed the long-range dependence in di¤erent

measures of daily integrated volatility and their logarithmic transforms. The QRLM tests proposed in

this paper, implemented over the whole set of percentiles along the deciles of the conditional distribution,

show that the suitability of long-memory models with a constant fractional integration order cannot

be rejected on log transforms of realized volatility measures. This evidence is more robust than that

based simply on the least-squares analysis and leads us to conclude that long-memory is a feature of

realized volatility time series.
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Technical Appendix

This appendix shows the formal proofs of Theorems 2.1 and 2.2 under Assumptions 1 and 2. It should

be noted that the condition that fvtg is uniformly bounded under the Lr norms for some r > 2 in

Assumption 2 is slightly stronger than necessary, but it allows us to o¤er a considerably simpli�ed,

yet rigorous, proof in this appendix. Furthermore, under the i.i.d. condition in Assumption 2, this

technical restriction is not particularly severe and we can set r = 2 + � with � > 0 arbitrarily small.

A more detailed and involving proof, considering weaker conditions, is available in the accompanying

working paper; see Hassler et al. (2012). We �rst provide a technical lemma for Theorem 2.1.

Lemma A Under Assumption 2 and the null hypothesis, max1�t�T jx�t�1;dj = op(
p
T ):

Proof. De�ne the non-decreasing deterministic sequence �t�1 =
t�1P
j=1

j�1. Then, for some � > 0,

Pr

�
max
1�t�T

jx�t�1;dj > �
p
T

�
� Pr

0@ max
1�t�T

t�1X
j=1

j�1j"t�j;dj > �
p
T

1A � Pr
 
max
1�t�T

j"t;dj >
�
p
T

�T�1

!
:

Following Koenker and Zhao (1996, Lemma A.1) and noting that, under Assumption 2 E
�
j"t;dj2+�

�
�

K <1; it then follows from Markov�s inequality that

Pr

 
max
1�t�T

j"t;dj >
�
p
T

�T�1

!
� K

�2+�
�2+�T�1
T �=2

= o (1) :

This upper bound vanishes asymptotically because �t�1 grows at logarithmic rate, log(t� 1); such that

�T�1 = O (log T ) and, hence, �
2+�
T�1T

��=2 ! 0 as T !1 for all �> 0: �

Proof of Theorem 2.1

Following Knight (1998), Koenker (2005, Theo. 4.1) established the asymptotic normality of the es-

timates of a linear quantile regression under a set of su¢ cient conditions, namely, Conditions A1

and A2. The proof of Theorem 2.1 follows by direct veri�cation of these conditions under the set

of assumptions considered. Condition A1 is covered by Assumption 2. Condition A2 holds if (i)

T�1
PT
t=2 z

�
t�1;dz

�0
t�1;d

p! 
; a positive de�nite limit; and (ii) max1�t�T jjz�t�1;djj = op(
p
T ). To show

(i), de�ne the stationary sequence with an in�nite past z��t�1;d =
�
1; x��t�1;d; "t�1;d; :::; "t�p;d

�0
; noting

that E
�
z��t�1;dz

��0
t�1;d

�
=
 <1: Since jjT�1

PT
t=2 z

�
t�1;dz

�0
t�1;d � 
jj = op(1) (c.f. Hassler et al. 2009,

Lemma B.6), and 
 is non-singular (c.f. Demetrescu et al. 2008, Lemma 5), (i) is ful�lled. Regarding

(ii), note that (4) corresponds to a quantile autoregression augmented by x�t�1;d: Quantile autoregres-

sions have been dealt with by Koul and Saleh (1995), establishing (ii) under Assumptions 1 and 2

26



and x�t�1;d = 0: Consequently, we can ignore the lagged endogenous regressors and focus on the i.i.d.

case aiming to show that (ii) holds when x�t�1;d 6= 0; since the proof then readily extends to the aug-

mented context as in Koul and Saleh (1995). The required result follows directly from Lemma A and,

consequently, the proof of Theorem 2.1 is complete by Koenker (2005, Theo. 4.1). �

Proof of Theorem 2.2

Portnoy (1984) and Gutenbrunner and Jureµcková (1992) showed that the QR process is tight, so the

limit distribution of the function
p
T b� (�) ; seen as a random function of � 2 (0; 1) ; is a rescaled (or

non-standard) Brownian bridge under the null hypothesis and the conditions in Theorem 2.1, with

a normal distribution arising for any �xed � . Since bs (�) b!22 converges to its theoretical counterpart
uniformly on � ; following the arguments in Portnoy (1984), the scaled process ST (�)! B (�) in (0; 1) ;

where B (�) is a standard Brownian bridge. Then, the limits stated for the Kolmogorov-Smirnov and the

Cramér-von Mises type statistics in (7) and (8) follow directly from the continuous mapping theorem.

�
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Figures and Tables

Figure 1: Daily measures of realized variation of IBM from 04/01/1993 to 31/05/2007 estimated from

5-minute log-returns. These are realized volatility �RV (t) =
hP78

n=1 r
2
(n);t

i1=2
, (unnormalized) realized

power variation �RPV (t) =
P78
m=1 jr(n);tj; and logarithmic transforms of these variables.
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Figure 2: Sample Autocorrelation Function (ACF) of the measures of daily realized variation in Figure
1 together with upper 95% con�dence band (dashed line).

0 100 200 300 400
0

0.1

0.2

0.3

0.4

ACF Realized Volatility σ
RV

(t)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

ACF Log Realized Volatility log σ
RV

(t)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

ACF Realized Power Variation log σ
RPV

(t)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

ACF Log Realized Power Variation log σ
RPV

(t)

28



Figure 3: Estimates of the long-memory parameter of log �RV (t) and log �RPV (t) from the QRLM
testing procedure and respective 95% and 99% con�dence intervals. For any quantile � 2 Q; �Central�
denotes the value of d 2 D for which the test statistic jtQR (�) j is closer to zero, i.e., the value which
provides maximum sample evidence for the null hypothesis. The remaining entries correspond to the
upper and lower bands of the con�dence intervals CI95% (dj�) and CI99% (dj�) constructed by inverting
tQR (�) :
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Figure 4: Values of the KST2 test statistic on log �RV (t) for di¤erent values of d computed from the
auxililary regression (4) and in a location-scale model:
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Figure 5: Values of the KST2 test statistic on log �RV (t) for di¤erent values of d computed from the
pre-crisis sample and the extended sample:
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