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The Cubic Nonlinear Schrédinger Equation

The Cubic Nonlinear Schrodinger Equation

iuy + Dxu = e|ul’u J

Here,
o u: (x,t) ERI xR — u(x,t)€C;

e ¢ =1 (defocusing) or e = —1 (focusing).
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where T = T(up) > 0.
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Local Well-posedness in H*(IR9)

Let
H (R ={feS <> (&) e A(RY)}, <&>=/1+]¢2
A classical Local Well-Posedness result reads
For all initial data ug € H*(RY) there exists a unique solution
u € C([0; T]; H*(RY)),  u(0,x) = up,

where T = T(up) > 0.

Typically,

T = T(||lwolls) is a decreasing function.
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The heuristic scaling argument

If uis a solution, so is u,(x, t) = pu(ux, %t). Also,
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The Critical scaling is sc = % -1
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The Cubic Nonlinear Schrédinger Equation

Local Well-posedness in H*(IR9)

The heuristic scaling argument

If uis a solution, so is u,(x, t) = pu(ux, %t). Also,

_d
()l e = 1172 [Ju(?) ] -

The Critical scaling is sc = % -1

Indeed, if T > 0 is the lifespan of u,

o the lisfespan of u, is T, = ATTQ;

@ The norm of the initial data is ||u,(0)| = u5+17g||u0||.

Ifs+1—9 <0 (ies<sc), T,and |lu,(0)] both decrease with .

Local Well-Posedness is not expected in H* for s < s.



The Cubic Nonlinear Schrédinger Equation

Local Well-posedness in H*(IR9)

This issue has been adressed by many authors during the 80s
(Ginibre, Velo, Tsutsumi among others).

The definitive result is the following:

Cazenave and Weissler, 1990

The IVP for the general Schrodinger equation
iy + Dgu = +|ul?u

is locally well-posed in H(RY) for s > max{0; s.}.




The Cubic Nonlinear Schrédinger Equation

Global Well-posedness in the energy space H'(RY)

The following quantities are formally conserved by the cNLS flow:

F(u) :/|u|2 E(u) = ;/WU|2+61/|U|4.
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The Cubic Nonlinear Schrédinger Equation

Global Well-posedness in the energy space H'(RY)

The following quantities are formally conserved by the cNLS flow:

F(u) :/|u|2 E(u) = ;/WU|2+61/|U|4.

@ In dimensions d = 1,2, 3 these quantities are well-defined for
u€e H,
@ Ford =1,2,3, s =1 > s, is subcritical.

Global Well-Posedness: Main idea

Together with LWP, GWP is achieved by controlling ||u(t)||m
(By L? conservation, it is enough to control ||Vu(t)||;2).




The Cubic Nonlinear Schrédinger Equation

Global Well-posedness in the energy space H'(RY)

@ In the defocusing case this control is immediate:

1
E(w) = E(w) = 5 [ IVuf + 5 [ 1t =5 [1val



The Cubic Nonlinear Schrédinger Equation

Global Well-posedness in the energy space H'(RY)

@ In the defocusing case this control is immediate:

1
E(uw) = /|Vu|2 /|u|4 > 2/\VU\2.

@ In the focusing case, things are not that simple, since

_1 2 1 4
5 1w [l



The Cubic Nonlinear Schrédinger Equation

Global Well-posedness in the energy space H*(RY) -

Focusing case

In dimension d =1

The Gagliardo Nirenberg inequality

3 1
Jull s < CllullE 1V ull 2
yields
1
E(uw) = E(u) = EIIVU(t)IIfz — Cllwoll 221V u(®) ] 2

which implies ||Vu(t)|[2 < C.




The Cubic Nonlinear Schrédinger Equation

Global Well-posedness in the energy space H*(RY) -

Focusing case

In dimension d = 2
The Gagliardo Nirenberg inequality

1 1
[ulls < Cllull2 1V ull 2

yields
1
E(uo) = E(u) = §IIVU(t)IIfz(1 — Clluof|2)-

which implies | Vu(t)|[,2 < C if ||ugl,2 is small enough.




The Cubic Nonlinear Schrédinger Equation

Global Well-posedness in the energy space H*(RY) -

Focusing case

In dimension d = 2, 3, the Virial inequality

('3t2/|X| lu(x, t)[?dx < 8dE(u,) J

implies blow-up for E(up) < 0.

Note that this can always be achieved: choosing uy # 0 and taking
u — +00,

E(uug) = /\Vuo|2 u4d/\u0|4dx—> —00

since 4
2—§<4—d<:>d<4.
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The Schrodinger-Debye System

iuy + %Au = uv
pve + v = \ul?

Here,
o u: (x,t) €ERI xR — u(x,t) € C;
o v:(x,t) ERI xR = v(x,t) €R;
o 1> 0;
@ A =1 (defocusing) or A = —1 (focusing).



The Schradinger-Debye system

The Schrodinger-Debye System

iuy + %Au = uv
pve + v = \ul?

Here,
o u: (x,t) €ERI xR — u(x,t) € C;
o v:(x,t) ERI xR = v(x,t) €R;
o 1> 0;
@ A =1 (defocusing) or A = —1 (focusing).

Note that for ;1 = 0 this system reduces to the cNLS equation.
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@ The quantity F(u) = / |u|? is conserved.
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following pseudo-Hamiltonian structure:
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The Schrodinger-Debye System

@ The quantity F(u) = / |u|? is conserved.

@ Furthermore, the Schrodinger-Debye system obeys the
following pseudo-Hamiltonian structure:

SEm =2 [(w)a

where

E(t) = /(|vu|2 + 2v|uf? — Av?)dx.
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Local Well-Posedness - Previous results

iuy + %Au = uv
pve + v = Aul?, u(x,0) = up(x), v(x,0) = v(x).
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The second equation can be solved with respect to v:
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Hence, the Schrodinger-Debye system can be rearranged into a
single integro-differential equation:
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Local Well-Posedness - Previous results

iuy + %Au = uv
pve + v = Aul?, u(x,0) = up(x), v(x,0) = v(x).

The second equation can be solved with respect to v:
- A —(t—t") INEI
vix,t)=e ry(x)+— [ e plu(x, t')|<dt’.
K Jo

Hence, the Schrodinger-Debye system can be rearranged into a
single integro-differential equation:

. 1 =L A ‘ (t—t N2 Ay
iuy+ -Au=-e ﬂvou—i—u/ e (=) ylu(x, t)[2dt.
2 ©Jo




The Schradinger-Debye system
Local Well-Posedness - Previous results

With this approach:

B. Bidégaray (1998,2000)

Let d = 1,2,3 and (up, vo) € HS(RY) x H5(R9). Then, there
exists T > 0 small enough such that the Schrodinger-Debye
system has a unique solution

o u € L®([0; T]; H5(RY)) if s > ¢;
o uc L>([0; T]; HY(RY)) if s = 1;
o ue C([0; T]; L2(R9)) N L& ([0; T]; L4*(RY)) if s = 0.




The Schradinger-Debye system
Local Well-Posedness

In the framework of Bourgain spaces introduced by J. Ginibre, Y.
Tsutsumi and G. Velo for the Zakharov system, we obtained the
following result:

Let d = 2,3 and (up, vo) € H*(RY) x H'(R?) such that
max{0,s — 1} </ < min{2s,s + 1}.

Then, there exists T > 0 small enough such that the
Schrodinger-Debye system has a unique solution

(u,v) € C([0; T]; H*(RY) x H'(R?)).




The Schradinger-Debye system
Local Well-Posedness

In the framework of Bourgain spaces introduced by J. Ginibre, Y.
Tsutsumi and G. Velo for the Zakharov system, we obtained the
following result:

Let d = 2,3 and (up, vo) € H*(RY) x H'(R?) such that
max{0,s — 1} </ < min{2s,s + 1}.

Then, there exists T > 0 small enough such that the
Schrodinger-Debye system has a unique solution

(u,v) € C([0; T]; H*(RY) x H'(R?)).

We will shortly describe this method.
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Consider the linear equation

—

iuy = L(D)u,  L(D)u(§) = p(£)a(&)-

(For the Schrédinger equation iuy + Axu = 0, p(&) = |¢?)
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Bourgain spaces

Consider the linear equation

—

iur = L(D)u, L(D)u(§) = p(§)a(&).
(For the Schrédinger equation iuy + Ayu = 0, p(€) = |£]?)

Taking the Fourier transform in space and time:

—70(7,€) = —[¢*a(r,€) = (7 + [¢[*)a(r,€) = 0.

01 is supported on the paraboloid 7 = —|¢|?. J
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Bourgain spaces

Now, we consider a nonlinear pertubation:
iuy = L(D)u + f(u).

(For the cNLS equation iu; + Axu = +|uf?u, f(u) = +|ul?u)
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Bourgain spaces

Now, we consider a nonlinear pertubation:
iuy = L(D)u + f(u).
(For the cNLS equation iu; + Axu = +|uf?u, f(u) = +|ul?u)

(After truncating in time)
0l remains concentrated near the hypersurface 7 = —|€2].
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Bourgain spaces

Now, we consider a nonlinear pertubation:
iuy = L(D)u + f(u).
(For the cNLS equation iu; + Axu = +|uf?u, f(u) = +|ul?u)

(After truncating in time)
0 remains concentrated near the hypersurface 7 = —|£2|

We will measure this phenomena using the norm

lules = | < € >< 7+ 1€ > 8(r, &)laqgas)

< x>=4/1+ |x|2
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Bourgain spaces

A fundamental result:

Theorem

Let Y = Y(R? x R) a Banach space and b > 3.
If, for all f € H; and for all 75 € R,

le e PPf ||y < |1F] e

then

X5b sy,
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Bourgain spaces

A fundamental result:

Theorem

Let Y = Y(R? x R) a Banach space and b > 3.
If, for all f € H; and for all 75 € R,

le e PPf ||y < |1F] e

then

X5b sy,

v

If b> 3, X5b s COHS.
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Bourgain spaces

Hence, (after truncating in time), we will prove the local-posedness
of
iuy = L(D)u + f(u)

in the space X,
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Bourgain spaces

Hence, (after truncating in time), we will prove the local-posedness

of
iuy = L(D)u + f(u)

in the space X,

Writing this equation in integral form yields (S(t) = e~ P(P)t)

u(t) = S(t)up — i/OtS(t — tYf(u(t'))dt' = S(t)ug — iU *; f(u).



Bourgain spaces X*
Bourgain spaces

Hence, (after truncating in time), we will prove the local-posedness

of
iuy = L(D)u + f(u)

in the space X,

Writing this equation in integral form yields (5(t) = e_ip(D)t)
u(t) = S(t)uo — i/OtS(t — V() = S(t)uo — iU+ F(u).
We will deal with

u(t) = 7S(t)ug — iU *¢ F(u). J
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Contraction is X5?

u(t) = Y7S(8)uo — itpr U e £(u). )

[ullxsp < lTS(8)uollxs + 17U % F(u)] x50
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Bourgain spaces X*

Contraction is X5?

u(t) = Y7S(8)uo — itpr U e £(u). )

[ullxsp < lTS(8)uollxs + 17U % F(u)] x50

@ Linear estimates

N

7S (&)uoll < {1l el ol ms-

e For suitable b/,

7 U e £(u)l|xe0 < TEEFE £ (u)]

Xs.b' -

@ Nonlinear estimates

o Estimate ||f(u)]|xs.» in terms of ||ul|xs.»



Bourgain spaces X*

Back to the Schrodinger-Debye system

We write

u(t)=S(t)uo —i [ S(t—t")uv(t)dt

_t A [T =)
v(t)=e LV0+/ e w |u(t)?dt’
0

and define Bourgain spaces adapted to v and v:



Bourgain spaces X*

Back to the Schrodinger-Debye system

We write
iuy + %Au = uv
pve + v = Aul?

in integral form:

u(t)=S(t)uo —i [ S(t—t")uv(t)dt

e A [ et
v(t)=e uvo+/ e w |u(t)?dt’
0
and define Bourgain spaces adapted to v and v:

1 .
lullxeo = I| < € >*< 7+ S[€[* > (&, 7).z

IVlipee = || < €>'< 7> 0(E,7) 12




Bourgain spaces X*

Back to the Schrodinger-Debye system

As explained, one only needs to estimate the nonlinear terms
o [[A(u, v)llxsrr = luviixser
o [[A(u, v)llpe = Nul?llxre

by the norms ||ul|xs.» and ||v|| gi.c.



Bourgain spaces X*

Back to the Schrodinger-Debye system

As explained, one only needs to estimate the nonlinear terms
o [[A(u, v)llxsrr = luviixser
o [[A(u, v)llpe = Nul?llxre

by the norms ||ul|xs.» and ||v|| gi.c.

We established the following (bilinear) estimates:

||uvHX577{r < CHUHXS,%+|’VHH/,%+’ s>0, /> max{0,s — 1};

HUWHHI’_{r < CH”HXs,yHWHXs,%*’ s >0,/ <min{2s,s — 1};




GWP for the S-D system
Global well-posedness of the D-S system

A. Corcho, J.D. Silva & FO (2011)

Let (ug, vo) € HY(R?) x L2(R). Then, for all T > 0, there exists a
unique solution

(u,v) € C([0; T], HY(R?) x L?(R)).

to the I.V.P. associated to the Debye-Schrodinger system.
This theorem remains valid in both focusing and defocusing cases
A= ==l
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Compute an a priori bound for the quantity

F(£) = [IVu(t)lIfz + v (t)lIZ-
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GWP for the S-D system
Global well-posedness of the D-S system

Idea of the proof:

Compute an a priori bound for the quantity

F(£) = [IVu(t)lIfz + v (t)lIZ-

We write v in terms of u:

_t A [t =)
v(t) =e rw(x)+ / e # u(x, t’)]zdt’
K Jo

and [|[Vul|2, in terms of the pseudo-energy E(t):

IVull?, = E(t) — /(2v|u|2 — Av?)dx.



GWP for the S-D system

Global well-posedness of the D-S system

Example of estimate:

1 [t _¢
HVH2§HV0Hz+/ e
®Jo

< Ivolla + / () 2| V()| 2

)
u(t)| et

uplf2
< ||V0|2+’u I / IV u(e)l|2de
0



GWP for the S-D system

Global well-posedness of the D-S system

By squaring,

4Hﬂ
IvIRa < 2ljvol3 + S 1eellie </HV \mw)

4Hw
V12 < 2llv|3 + —oliz /HVU )2t

and

by Cauchy Schwarz.



GWP for the S-D system

Global well-posedness of the D-S system

By squaring,

4Hﬂ
IvIRa < 2ljvol3 + S 1eellie </HV \mw)

4Hw
V12 < 2llv|3 + —oliz /HVU )2t

and

by Cauchy Schwarz.
Finally,

c4
0
IvIB: < 2ol + el ” 72 /ftwt



GWP for the S-D system

Global well-posedness of the D-S system

One can show that
For all t < T, = T,(||uoll2),

t
f(t) < ao +a1/ f(t")dt',
0

where o and «; depend exclusively on the initial data.
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