Dispersive equations and propagation of solitons

Filipe Oliveira

Centro de Matemdtica e Aplicagdes - Faculdade de Ciéncias e Tecnologia
Universidade Nova de Lisboa

Ciéncia 2010 Meeting, Lisbon



@ Dispersive equations
© Physical Framework

e A few recent results



Dispersive equations

Linear dispersive equations

Let us consider a plane wave
u(%, t) = Ae'kx=1)
. s . . w
propagating in the k direction with phase velocity v, = n

where k = ||k||.



Dispersive equations

Linear dispersive equations

Let us consider a plane wave
u(%, t) = Ae'kx=1)

propagating in the k direction with phase velocity v, = %,
k.

x|

where k = ||K||. Note that u(X, t) = AekF—vet) fi —



Dispersive equations

Linear dispersive equations

Let us consider a plane wave
u(%, t) = Ae'kx=1)
. s . . w
propagating in the k direction with phase velocity v, = n

k.

x|

where k = ||K||. Note that u(X, t) = AekF—vet) fi —

Definition
A linear PDE of the form

u+ Lu=0

is said to be dispersive if the phase-velocity of the plane wave
solutions depend on the frequency of the wave.
(Here, L is a differential operator in space.)




Dispersive equations

Linear dispersive equations

Let us consider a plane wave
u(%, t) = Ae'kx=1)
. s . . w
propagating in the k direction with phase velocity v, = n

where k = ||k||. Note that u(X, t) = Aeik-G=vpt) i — L

x|

Definition
A linear PDE of the form

u+ Lu=0

is said to be dispersive if the phase-velocity of the plane wave
solutions depend on the frequency of the wave.
(Here, L is a differential operator in space.)

Different frequencies travel at the different speeds: the wave will
disperse.
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Dispersive equations

A few examples

Putting as before k = ||k|| and 7# = kk

The free Schrodinger equation juy + Au=0.
w(k) = k?; Phase velocity: v, = w2 7.
The Airy equation u; + Ux = 0.

w(k) = —k3; Phase velocity: v, = w3

.
the transport equation vy — cuy, = 0.

w(k) = ck; Phase velocity: v, = cii.

The wave equation uy — c?Au = 0.

w(k) = £ck; Phase velocity: v, = sign(w)cni.
The heat equation: u; — c?Au = 0.

No dispersion! (—iw + c?k? = 0).
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Dispersion is not dissipation!

Take the free Schrodinger equation will null condition at infinity:

iUt +AU = O

u(%,t) = / el (F5=w(D g (k) dk.
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Indeed, lim |lu(.,t)|lc =0, but, multiplying the equation by ¥
t——+o0
and integrating the imaginary part,

& [ 1utxopex = —im [ 19uar) ~o.

hence, for all t > 0,
[ull 2 = lluoll 2-
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Nonlinear dispersive equations

We add a nonlinear term
us + Lu+ N(u) =0.

A few famous examples:
@ The nonlinear Schrodinger equation juy + Au + |ulPu = 0;
@ The KdV equation u; 4 Uy + uty = 0;

@ The Boussinesq equation vy + Huy + uuyx = 0.
(H denotes the Hilbert transform)

Fundamental Feature of nonlinear dispersive equations

The linear part tends to disperse the solution.
The nonlinear part tends to concentrate it.

Essentiallly 3 outcomes: blow-up, global existence, solitons.
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solitons

Fir§t observed by John Scott Russel in 1834, in the

4"(...)assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or

diminution of speed.”
“(...) after a chase of one or two miles | lost it in the windings of

the channel.”
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Nonlinear dispersive equation arise in the study of wave
propagation in dispersive media.

@ Magneto-HydroDynamics

Otpm + V.(pmu) =0

pm(0¢u +u.Vu) = —%V(px/,) +(Vxb)xb
dtb =V x (ux b) = £V x (;L(V x b) x b)
V.b =0,

Propagation of waves (Langmuir waves, Alfvén waves) in
magnetized plasmas.

e Water waves (Navier-Stokes equations)
Propagation of waves in shallow waters.



Physical Framework

Main problems

e Well-posedness.
The models studied are asymptotic approximations!
(Ex:
up + EAu+ A% =0.)

@ Existence and stability of solitary waves.
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@ FO - Stability of the solitons for the one-dimensional
Zakharov-Rubenchik equation, Physica D (2003). J

i07q 4+ wixxq — k(u—%p+alql?)g=0 (a)
ed7p + x(u — vp) = —kdx|q[? (b)
edru+ Ox(Bp — vu) = 5vox|q|? (c),

B is the transverse magnetic field, u is the ion speed in the (Ox)

direction and p the density of mass.
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- Global well-posedness for initial data in H? x H? x H!.
- Existence and stability of solitary waves of the form

q(x,t) = e“tA(x — ct), p(x,t) = B(x — ct),u(x,t) = C(x — ct).

@ FO - A class of non-local operators for Vorticity waves,
Applicable Analysis (2005) J

Study of the dispersion of equations of the form

Ac+ L(A) =0, where L(A)E = i€ log(¢]).
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@ Jodo Paulo Dias, Mario Figueira and FO
Existence of local strong solutions for a quasilinear Benney
Equation, Comptes Rendus de I' A. S. Paris -(2007).

- Local well-posedness of the Benney-like system (interaction of
short and long waves)

Uy + Uy = |u|2u + uv,

ve + (F(v))x = |ul?
in H3 x H2.
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@ S. Antontsev, Jodo Paulo Dias, Mério Figueira and FO,
Non-existence of global solutions for a quasilinear Benney
system, Journal of Mathematical Fluid Mechanics (2009)

- Non existence of global solutions in the half-plane for the
previous Benney-like system

iue + e = |u|?u + uv,

ve + (F(v))x = Jul}
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e J. Silva, M. Panthee and FO, On the Cauchy problem for the
Zakharov-Schulman systems, (2009) J

-Local and global well-posedness of the system
iug + Liu = |u)?u + uv,
Lov = £3(|u|2).
e J.P. Dias, M. Figueira FO, Well-posedness and existence of

bound-states for a coupled Schrédinger gKdV system,
Nonlinear Analysis (2010).

- Global well-posedness and existence of solitary waves for the
system
iur + Uy = auv + Blul9u,

Vi + Vixx + a(V)VX = 7(‘“‘2)X’



Thank you for your attention
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