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Boltzmann 1870

Description of the dynamics of a rarefied ideal gas. f (~x , ~v , t):
distribution function of particles in the phase space
(position,momentum) at time t.

Df

Dt
=
∂f

∂t
(~x , ~v , t) + ~v .~∇~x f (~x , ~v , t) =< f , f > .
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Boltzmann 1870

Description of the dynamics of a rarefied ideal gas. f (~x , ~v , t):
distribution function of particles in the phase space
(position,momentum) at time t.

Df

Dt
=
∂f

∂t
(~x , ~v , t) + ~v .~∇~x f (~x , ~v , t) =< f , f > .

Collision operator:

< f , f >=

∫ ∫

Ω,~v2

(f ∗f ∗2 − ff2)|~v − ~v2|σ(Ω)dΩd~v2,

where

f = f (~x , ~v , t) , f2 = f (~x , ~v2, t), f ∗ = f (~x , ~v∗, t) , f ∗2 = f (~x , ~v∗

2 , t),

~v∗, ~v∗

2 functions of ~v , ~v2, Ω.
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Statistical Entropy (Boltzmann, Gibbs 1872).
Milestone: Boltzmann H function,

H(~x , t) =

∫

V

f (~x , ~v , t) log(f (~x , ~v , t))dv
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Statistical Entropy (Boltzmann, Gibbs 1872).
Milestone: Boltzmann H function,

H(~x , t) =

∫

V

f (~x , ~v , t) log(f (~x , ~v , t))dv

H-Theorem

∂

∂t
H(~x , t) ≤ 0.
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Discrete Boltzmann Models: the Broadwell Model (1964)

We will allow particles to travel at a finite number of preselected
velocities only.
6-velocity Broadwell Model:

v1 = (c , 0, 0), v2 = (0, c , 0), v3 = (0, 0, c)
and vj+3 = −vj for j = 1, 2, 3.
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center of each of its faces.
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Discrete Boltzmann Models: the Broadwell Model (1964)

We will allow particles to travel at a finite number of preselected
velocities only.
6-velocity Broadwell Model:

v1 = (c , 0, 0), v2 = (0, c , 0), v3 = (0, 0, c)
and vj+3 = −vj for j = 1, 2, 3.

Velocities are obtained by joining the center of a cube to the
center of each of its faces.

Ni (~x , t): Number density of particles travelling with speed vi .
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Evolution system for N = (N1, . . . , N6)

Admissible (inelastic) collisions:
Conservation of kinetic energy and momentum.

Particles with velocity vi collide with particles with velocity
−vi = vi+3 with 3 possible outcomes
(each with probability p = 1/3.)
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Evolution system for N = (N1, . . . , N6)

Admissible (inelastic) collisions:
Conservation of kinetic energy and momentum.

Particles with velocity vi collide with particles with velocity
−vi = vi+3 with 3 possible outcomes
(each with probability p = 1/3.)

∂Ni

∂t
(~x , ~v , t) + ~vi .~∇~xNi (~x , ~v , t)=

2cS(−2
3NiNi+3+

1
3Ni+1Ni+4+

1
3Ni+2Ni+5)
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We will focus on the one-dimensional evolution. The Broadwell
system becomes:
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We will focus on the one-dimensional evolution. The Broadwell
system becomes:







































∂N1

∂t
+ c

∂N1

∂x
= 4cS

3 (N2
2 − N1N3)

∂N2

∂t
= 2cS

3 (N1N3 − N2
2 )

∂N3

∂t
− c

∂N3

∂x
= 4cS

3 (N2
2 − N1N3)

Kawashima (Nonlinear analysis-TMA, 1990):
Existence of strong global solutions for this system.
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A model for a chemically active gas

1997: R. Monaco, M. Pandolfi Bianchi and A.J. Soares.
Three species: A, A2, A∗ undergoing an autocatalytic reaction

A2 + M ⇋ A + A∗ + M , M = A,A∗,A2
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1997: R. Monaco, M. Pandolfi Bianchi and A.J. Soares.
Three species: A, A2, A∗ undergoing an autocatalytic reaction

A2 + M ⇋ A + A∗ + M , M = A,A∗,A2

Kinetic equations:(v1, v2, v3) = (c , 0,−c)
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∂
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∂

∂t
NA

i (x , t) + vi

∂

∂x
NA

i (x , t) = FA
i (N(x , t)) (i ∈ {1; 2; 3}),

∂

∂t
NA2

i (x , t) +
vi

2

∂

∂x
NA2

i (x , t) = FA2

i (N(x , t)) (i ∈ {1; 2; 3}),

∂

∂t
NA∗

i (x , t) + vi

∂

∂x
NA∗

i (x , t) = FA∗

i (N(x , t)) (i ∈ {1; 3}),

N =
(

NA
1 ,N

A
2 ,N

A
3 ,N

A∗

1 ,NA∗

3 ,NA2
1 ,NA2

2 ,NA3
3

)

.
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Structure of the collision terms:

FM
i (N) =

(

P
(1)
i ,M(N) + P

(2)
i ,M(N)

)

− NM
i

(

Q
(1)
i ,M(N) + Q

(2)
i ,M(N)

)
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i ,M(N): polynomials of degree 2 and 3,

representing the creation of particles M with velocity vi due to
inert or reactive collisions.
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Structure of the collision terms:

FM
i (N) =

(

P
(1)
i ,M(N) + P

(2)
i ,M(N)

)

− NM
i

(

Q
(1)
i ,M(N) + Q

(2)
i ,M(N)

)

P
(1)
i ,M(N) and P

(2)
i ,M(N): polynomials of degree 2 and 3,

representing the creation of particles M with velocity vi due to
inert or reactive collisions.

Q
(1)
i ,M(N) and Q

(2)
i ,M(N): polynomials of degree 1 and 2,

representing the disappearance of particles M with velocity vi

due to inert or reactive collisions.
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We will study the mixed problem in the half-space:
(x , t) ∈ [0;+∞[×[0;+∞[.

Initial conditions

NM
i (x , 0) = NM

i0
(x) , x ≥ 0

Boundary conditions





NA
1 (0, t)

NA∗

1 (0, t)

NA2
1 (0, t)



 =





βA
A βA

A∗ βA
A2

βA∗

A βA∗

A∗ βA∗

A2

βA2
A βA2

A∗ βA2
A2









NA
3 (0, t)

NA∗

3 (0, t)

NA2
3 (0, t)





∑

M′

βM
M′ ≤ 1 , βA

M + βA∗

M +
1

2
βA2

M ≤ δM ,

where δM = 1 if M = A,A∗ and δA2
= 1

2 .
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We set

B1(X ) = C 1(X )∩W 1,∞(X ) =

{

f ∈ C 1(X ) / f ,
∂f

∂x
,
∂f

∂t
∈ L∞(X )

}

.

Local solutions

Let No ∈ B1
+([0;+∞[). Then there exists a unique solution

N ∈ B1
+([0;+∞[×[0;To ])

for the mixed-problem, where the life-span To > 0 depends
exclusively on

Eo = max
i ,M

sup
x∈R+

NM
io (x).
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sketch of the proof

We will use a Banach fixed-point technique.

∂

∂t
NM

i + vM
i

∂

∂x
NM

i = FM
i (N).

We sum λNM
i :

∂

∂t
NM

i + vM
i

∂

∂x
NM

i + λNM
i = FM

i (N) + λNM
i := F

M,λ
i (N) (1)
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sketch of the proof

We will use a Banach fixed-point technique.

∂

∂t
NM

i + vM
i

∂

∂x
NM

i = FM
i (N).

We sum λNM
i :

∂

∂t
NM

i + vM
i

∂

∂x
NM

i + λNM
i = FM

i (N) + λNM
i := F

M,λ
i (N) (1)

We fix (x , t) and integrate (1) along the vM
i −characteristic

through (x , t).
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Two cases:

1. If x − vM
i (t) ≥ 0:

NM
i (x , t) = e−λtNio (x − vM

i t)+

+

∫ t

0
e−λ(t−τ)F

M,λ
i (N)(x − vM

i (t − τ), τ)dτ := expr1(N).
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1. If x − vM
i (t) ≥ 0:

NM
i (x , t) = e−λtNio (x − vM

i t)+

+

∫ t

0
e−λ(t−τ)F

M,λ
i (N)(x − vM

i (t − τ), τ)dτ := expr1(N).

2. If x − vM
i (t) < 0:

NM
i (x , t) = e−λ(t−tM

i
)NM

i (0, tM
i )+

+

∫ t

tM
i

e−λ(t−τ)F
M,λ
i (N)(x − vM

i (t − τ), τ)dτ.
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Two cases:

1. If x − vM
i (t) ≥ 0:

NM
i (x , t) = e−λtNio (x − vM

i t)+

+

∫ t

0
e−λ(t−τ)F

M,λ
i (N)(x − vM

i (t − τ), τ)dτ := expr1(N).

2. If x − vM
i (t) < 0:

NM
i (x , t) = e−λ(t−tM

i
)NM

i (0, tM
i )+

+

∫ t

tM
i

e−λ(t−τ)F
M,λ
i (N)(x − vM

i (t − τ), τ)dτ.

We use the boundary condition:



Discrete Boltzmann Equations A discrete model for a chemically active gas Local solutions Global solutions

NM
i (x , t) = e−λ(t−tM

i )
∑

M′

βM
M′N

M′

3 (0, tM
i )+

+

∫ t

tM
i

e−λ(t−τ)F
M,λ
i (N)(x − vM

i (t − τ), τ)dτ.

We integrate once again along the characteristics:
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NM
i (x , t) = e−λ(t−tM

i )
∑

M′

βM
M′N

M′

3 (0, tM
i )+

+

∫ t

tM
i

e−λ(t−τ)F
M,λ
i (N)(x − vM

i (t − τ), τ)dτ.

We integrate once again along the characteristics:

NM
i (x , t) = e−λt

∑

M′

βM
M′e

−λtM
i NM′

30
(−vM′

3 tM
i )+

+ e−λt
∑

M′

βM
M′

∫ tM
i

0
e−λ(tM

i −τ)F
M′,λ
3 (N)(x − vM′

3 (t − τ), τ)dτ

+

∫ t

tM
i

e−λ(t−τ)F
M,λ
i (N)(x − vM

i (t − τ), τ)dτ := expr2(N).
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We set:

ΩT = [0;+∞[×[0;T ]
Ω+

M,i ,T = {(x , t) ∈ ΩT ; x ≥ vM
i t}

Ω−

M,i ,T = {(x , t) ∈ ΩT ; x < vM
i t}.
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We set:

ΩT = [0;+∞[×[0;T ]
Ω+

M,i ,T = {(x , t) ∈ ΩT ; x ≥ vM
i t}

Ω−

M,i ,T = {(x , t) ∈ ΩT ; x < vM
i t}.

X 1(T ) =
{

N = (NM
i )i ,M ; N,

∂NM
i

∂x
∈ C o ∩ L∞(ΩT )

}

S(T ,E ,G ) ⊂ X 1(T ) the close and convex set of functions N

such that
∀i ,M

NM
i (x , 0) = NM

io
(x) , x ∈ [0; +∞[

0 ≤ NM
i (x , t) ≤ E , |

∂NM
i

∂x
(x , t)| ≤ G , (x , t) ∈ ΩT .
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We now set

ψ : S(T ,E ,G ) → S(T ,E ,G )
NM

i (x , t) → expr1(N) if (x , t) ∈ Ω+
M,i ,T

NM
i (x , t) → expr2(N) if (x , t) ∈ Ω+

M,i ,T
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We now set

ψ : S(T ,E ,G ) → S(T ,E ,G )
NM

i (x , t) → expr1(N) if (x , t) ∈ Ω+
M,i ,T

NM
i (x , t) → expr2(N) if (x , t) ∈ Ω+

M,i ,T

We can prove that for adequate values of S ,T ,G , λ, ψ is a
contraction of S(T ,E ,G ).

Furthermore, the choice of T depends exclusively on Eo .



Discrete Boltzmann Equations A discrete model for a chemically active gas Local solutions Global solutions

We now set

ψ : S(T ,E ,G ) → S(T ,E ,G )
NM

i (x , t) → expr1(N) if (x , t) ∈ Ω+
M,i ,T

NM
i (x , t) → expr2(N) if (x , t) ∈ Ω+

M,i ,T

We can prove that for adequate values of S ,T ,G , λ, ψ is a
contraction of S(T ,E ,G ).

Furthermore, the choice of T depends exclusively on Eo .

The time regularity is easy ro get.
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Global solutions (2005)

Let No ∈ B1
+([0;∞[) ∩ L1([0;+∞[).

Then there exists ǫ, ǫ′ > 0 such that if

mo =

∫ +∞

0





3
∑

i=1

(NA
io

+ 2NA2
io

) +
∑

i=1,3

NA∗

io



 (x)dx < ǫ

and
Eo = max

i ,M
sup

x∈R+

NM
io (x) < ǫ′,

the mixed problem has a unique solution

N ∈ B1
+([0;∞[×[0;∞[.

Proof: We set E (To) = maxi ,M supx∈R+, t∈[0;To ] Ni
M(x , t).

We show an a priori estimate of the type ∀t ∈ [0;T [, E (t) ≤ M.
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Conservation laws:

∂

∂t

(

3
∑

i=1

(NA
i + N

A2
i )

)

+
∂

∂x

(

3
∑

i=1

vi(N
A
i +

1

2
N

A2
i )

)

= 0

∂

∂t





3
∑

i=1

NA2
i +

∑

i=1,3

NA∗

i



+
∂

∂x





3
∑

i=1

1

2
viN

A2
i +

∑

i=1,3

viN
A∗

i



 = 0

∂

∂t





3
∑

i=1

vi(N
A
i + NA2

i ) +
∑

i=1,3

viN
A∗

i





+
∂

∂x





3
∑

i=1

v2
i (NA

i +
1

2
NA2

i ) +
∑

i=1,3

v2
i NA∗

i



 = 0 .
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From the conservation laws, we build two exact forms:

w = −





3
∑

i=1

(NA
i + 2NA2

i ) +
∑

i=1,3

NA∗

i



 dx+





3
∑

i=1

vi (N
A
i + NA2

i ) +
∑

i=1,3

viN
A∗

i



 dt.

w ′ = −





3
∑

i=1

((wj − vi )N
A
i + (2wj − vi )N

A2
i ) +

∑

i=1,3

(wj − vi )N
A∗

i



 dx

+





3
∑

i=1

vi((wj − vi )N
A
i + (wj −

1

2
vi )N

A2
i ) +

∑

i=1,3

vi(wj − vi)N
A∗

i



 dt.



Discrete Boltzmann Equations A discrete model for a chemically active gas Local solutions Global solutions

We integrate the 1-forms w and w ′in cycles:

6t

�
�

�
�

�
�

�
�

�
�

�

��������@
@

@
@

@
@

@
@

@
@

@

Ctj = t − x/wj

B

x + ct

A

tC = t − x/c

D

x + c(t − tj )

x − wj t 0

X (x, t)

(c)

(wj )

(−c)
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, Eventually, we will get the inequality

E (t) ≤ CEo + C ′mo(E (t) + E (t)2).


	Discrete Boltzmann Equations
	A discrete model for a chemically active gas
	Local solutions
	Global solutions

