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can be observed in several magnetised plasmas.

The Dynamics of Alfvén waves are ruled by the so-called
MHD equations.
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In the presence of an external magnetic field, transverse
oscillations of the magnetic field lines known as Alfvén waves
can be observed in several magnetised plasmas.

The Dynamics of Alfvén waves are ruled by the so-called
MHD equations.

The MHD equations read:





∂tρM + ∇.(ρMu) = 0

ρM(∂tu + u.∇u) = −β
γ
∇(ργ

M
) + (∇× b) × b

∂tb = ∇× (u × b) − 1
Ri
∇× ( 1

ρM
(∇× b) × b)

∇.b = 0,

where b is the magnetic field, ρ the density of mass and u the
fluid speed.
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We present here a uni-dimensional asymptotic model for the
evolution of wave trains of Alfvén waves with wave number k and
frequency ω̃, in a frame travelling at the Alfvén-wave group
velocity v = 2ω̃3k−1(k2 + ω̃2)−1.
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i∂TB + ω∂XXB − k(u − v

2ρ+ q|B |2)B = 0 (a)

ǫ∂Tρ+ ∂X (u − vρ) = −k∂X |B |2 (b)

ǫ∂Tu + ∂X (βρ− vu) = k

2 v∂X |B |2 (c),
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i∂TB + ω∂XXB − k(u − v

2ρ+ q|B |2)B = 0 (a)

ǫ∂Tρ+ ∂X (u − vρ) = −k∂X |B |2 (b)

ǫ∂Tu + ∂X (βρ− vu) = k

2 v∂X |B |2 (c),

(X ,T ) has been scaled: X = ǫ(x − vt) and T = ǫ2t.

B is the transverse magnetic field, u is the ion speed in the (Ox)
direction and ρ the density of mass.

We obtain here the Zakharov-Rubenchik equation, introduced as
an universal model for the interaction of long and short waves
(1972).
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Well posedness





i∂TB + ω∂XXB − k(u − v

2ρ+ q|B |2)B = 0 (a)

ǫ∂Tρ+ ∂X (u − vρ) = −k∂X |B |2 (b)

ǫ∂Tu + ∂X (βρ− vu) = k

2 v∂X |B |2 (c).

Theorem 1

The Zakharov-Rubenchik system is globally well-posed in
H2(R) × H1(R) × H1(R).
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First, a change of variables:





iBt + Bxx + ψ1B + ψ2B + |B |2B = 0
ψ1tt − ψ1xx = |B |2xx
ψ2t − ψ2x = |B |2x

(1)

For ψ1 ≡ ψ2 ≡ 0, the system becomes the Nonlinear Schrodinger
Equation.

For ψ1 ≡ 0, we get the Zakharov Equation.

For ψ2 ≡ 0, the system reduces to the Benney Equation.

The difficulty here is the derivative loss in the nonlinear terms.
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The system can be re-written without derivative-loss:[F → Bt]:





iFt + Fxx + (ψ1 + ψ2 + B)F

+ (ψ1t + ψ2t + FB̃)B̃ = 0
ψ1tt − ψ1xx = |B |2xx
ψ2t − ψ2x = |B |2x ,

where

B̃(x , t) = Bo(x) +

∫
t

0
F (x , s)ds

B(x , t) = (∆ − 1)−1A(F , ψ1, ψ2, B̃).
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Using Strichartz-type estimates for the free Schrödinger group, we
can now obtain the existence of local (strong) solutions via a
fixed-point in the Banach space

‖(F , ψ1, ψ2)‖X (T ) = ‖F‖L∞(0,T ,L2) + ‖F‖L6(0,T ,L6)

+ ‖ψ1‖L∞(0,T ,H1) + ‖ψ2‖L∞(0,T ,H1)

+ ‖ψ1t‖L∞(0,T ,L2) + ‖ψ2t‖L∞(0,T ,L2).

To obtain global solutions, we need to compute some invariants:
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The following quantities are conserved by the Zakharov-Rubenchik
flow:

I1(t) =

∫

R

|B |2

I2(t) =
ω

2

∫

R

|Bx |2 +
kq

4

∫

R

|B |4 +
k

2

∫

R

(u − v

2
ρ)|B |2

+
β

4

∫

R

|ρ|2 +
1

4

∫

R

|u|2 − v

2

∫

R

uρ,

I3(t) = ǫ

∫

R

uρ+
i

2

∫

R

(BBx − BxB).
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The following quantities are conserved by the Zakharov-Rubenchik
flow:

I1(t) =

∫

R

|B |2

I2(t) =
ω
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∫

R

|Bx |2 +
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4

∫

R

|B |4 +
k

2

∫

R
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2
ρ)|B |2

+
β

4

∫

R

|ρ|2 +
1

4

∫

R

|u|2 − v

2

∫

R

uρ,

I3(t) = ǫ

∫

R

uρ+
i

2

∫

R

(BBx − BxB).

Using these quantities, One can show the a priori estimation

∀t ≤ T , ‖(F , ψ1, ψ2)‖X (T ) ≤ D(T ),

where D is a continuous function. This is enough to prove that the
solutions ares global (absence of blow-up)
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Existence of solitary-wave solutions

We look for solutions of the form

Qc(x , t) = (e iλtA(x − ct), a|A(x − ct)|2, b|A(x − ct)|2).
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Existence of solitary-wave solutions

We look for solutions of the form

Qc(x , t) = (e iλtA(x − ct), a|A(x − ct)|2, b|A(x − ct)|2).

Inserting this in the ZR equation, we find that Qc(t) is a solution

iff R(x) = e
−icx

2ω A(x) satisfies

R ′′ − ER − (
k

ω
a − v

2
b + q)R2R = 0,

where E = 1
w

(λ− c2

4ω
) and

a = a(c) =
k(−β + v

2 (cǫ+ v))

β − (cǫ+ v)2
, b = b(c) =

k(−cǫ− v

2 )

β − (cǫ+ v)2
.



Introduction Well posedness of the IVP Solitary waves The adiabatic limit Proof

For E > 0, it is known that

R ′′ − ER − (
k

ω
a − v

2
b + q)R2R = 0

possesses a unique positive exponential decreasing solution,
provided that a − v

2b + q < 0.
This last condition holds provided that ǫ is small enough. Hence:
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For E > 0, it is known that

R ′′ − ER − (
k

ω
a − v

2
b + q)R2R = 0

possesses a unique positive exponential decreasing solution,
provided that a − v

2b + q < 0.
This last condition holds provided that ǫ is small enough. Hence:

Existence of ground states

For ǫ small enough, the Zakharov-Rubenchik system possesses
soliton solutions.



Introduction Well posedness of the IVP Solitary waves The adiabatic limit Proof

Orbital Stability of ground states

We Introduce the orbit Q = (B , u, ρ) ∈ H1 × L2 × L2 :

O(Q) = {e iαB(.+ xo), u(.+ xo), ρ(.+ xo)/α, xo ∈ R}.

We set the distance between the orbit O(Q) and the orbit of a
ground state O(QR) at a time t:

d(t) := d(Q(t),QR(t)) := inf α, xo{‖Qα,xo
(t) − QR(t)‖}.

By building an appropriate Lyapunov invariant, we can prove the
following:
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Orbital Stability of ground states

We Introduce the orbit Q = (B , u, ρ) ∈ H1 × L2 × L2 :

O(Q) = {e iαB(.+ xo), u(.+ xo), ρ(.+ xo)/α, xo ∈ R}.

We set the distance between the orbit O(Q) and the orbit of a
ground state O(QR) at a time t:

d(t) := d(Q(t),QR(t)) := inf α, xo{‖Qα,xo
(t) − QR(t)‖}.

By building an appropriate Lyapunov invariant, we can prove the
following:

Orbital stability

For every ǫ > 0 , there exists δ > 0 such that

‖Qo − QR(0)‖ < δ ⇒ ∀t ≥ 0 , d(t) < ǫ.
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In the adiabatic limit (ǫ→ 0):

i∂TB + ω∂XX B − k(u − v

2ρ+ q|B |2)B = 0 (a)
ǫ∂Tρ+ ∂X (u − vρ) = −k∂X |B |2 (b)
ǫ∂T u+∂X (βρ− vu) = k

2 v∂X |B |2 (c).

u and ρ become slaved to the magnetic field amplitude:

u − vρ = −k|B |2 and βρ− vu =
k

2
v |B |2.

Replacing in (a), B satisfies the NLS equation

i∂TB + ωBXX +
kv

4(β − v2)
|B |2B = 0.

Question: (B (ǫ), ρ(ǫ), u(ǫ)) solution of the Zakharov-Rubenchik
system.
B solution of the NLS equation.

B (ǫ) → B ? If so, in what sense?
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Main Theorem

Assume ω̃ < 0, β − v2 > 0 and v < 0.
Let s > 3

2 , ǫ < 1 and

(Bo , ρo , uo) ∈ Hs+1(R) × Hs(R) × Hs(R).
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Main Theorem

Assume ω̃ < 0, β − v2 > 0 and v < 0.
Let s > 3

2 , ǫ < 1 and

(Bo , ρo , uo) ∈ Hs+1(R) × Hs(R) × Hs(R).

Then there exists To > 0 independent of ǫ such that the
Zakharov-Rubenchik possesses a unique solution

(B (ǫ), ρ(ǫ), u(ǫ)) ∈ Co([0;To ];Hs+1(R) × Hs(R) × Hs(R)).

Furthermore, if uo − vρo = −k|Bo |2 and βρo − vuo = k v

2 |Bo |2,

B (ǫ) → B in C o([0;T ];C 2
loc )

where B is the solution to the NLS equation (15) for initial data
B(0, x) = Bo(x).
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Key: if ω̃ < 0, β − v2 > 0 and v < 0,putting

(V ,F ,G ) := (ǫ∂−1
x (u +

v

2
ρ)t , u − vρ+ k|B |2, βρ− vu + k

v

2
|B |2)

and

(α, β, γ, δ) :=
√

2(Re(B), Im(B),Re(Bx ), Im(Bx )),

Y = (V ,F ,G , α, β, γ, δ)
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Key: if ω̃ < 0, β − v2 > 0 and v < 0,putting

(V ,F ,G ) := (ǫ∂−1
x (u +

v

2
ρ)t , u − vρ+ k|B |2, βρ− vu + k

v

2
|B |2)

and

(α, β, γ, δ) :=
√

2(Re(B), Im(B),Re(Bx ), Im(Bx )),

Y = (V ,F ,G , α, β, γ, δ)

satisfies the perturbed symmetric hyperbolic system:

Yt +

(
1

ǫ
M + N(Y )

)
Yx + R(Y ) + AYxx = 0.

Here, M, N(Y ) are symmetric matrixes, A is antisymmetric and
R(Y ) is a nonlinear term.
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1

ǫ
MYx = 0.
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Yt +

(
1

ǫ
M + N(Y )

)
Yx + R(Y ) + AYxx = 0.

We use Friedrich’s theory for symmetric hyperbolic systems:

Yt +
1

ǫ
MYx = 0.

This theory is known to work in the quasi-linear case:

Yt +

(
1

ǫ
M + N(Y )

)
Yx + R(Y ) = 0.

Here, we will extend it to the case where the “perturbation”

AYXX

is present.
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For a fixed function W we consider the problem

Yt +

(
1

ǫ
M + N(W )

)
Yx + AYxx = 0. (2)
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For a fixed function W we consider the problem

Yt +

(
1

ǫ
M + N(W )

)
Yx + AYxx = 0. (2)

We prove the following Lemma:

Lemma

Let s > 3
2 and W (x , t) ∈ C(R,Hs (R)7). There exists a one

parameter semigroup {U(t)}t≥0 acting on Hs(R)7:

U(t) : Hs(R)7 → Hs(R)7

Yo → U(t)Yo

which generates the solution
Y (x , t) = U(t)Yo ∈ C (R+,H

s(R)7) ∩ C 1(R+,H
s−2(R)7) of the

I.V.P. (2) for initial data Yo .
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For a fixed function W we consider the problem

Yt +

(
1

ǫ
M + N(W )

)
Yx + AYxx = 0. (2)

We prove the following Lemma:

Lemma

Let s > 3
2 and W (x , t) ∈ C(R,Hs (R)7). There exists a one

parameter semigroup {U(t)}t≥0 acting on Hs(R)7:

U(t) : Hs(R)7 → Hs(R)7

Yo → U(t)Yo

which generates the solution
Y (x , t) = U(t)Yo ∈ C (R+,H

s(R)7) ∩ C 1(R+,H
s−2(R)7) of the

I.V.P. (2) for initial data Yo .
Moreover, for T > 0 and for every f ∈ Hs(R)7,

‖U(t)f ‖s ≤ eCT sup0≤t≤T ‖W (t)‖2
s ‖f ‖s , t ∈ [0;T ]. (3)
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We derive an a priori estimate:
Applying Λs = (1 − ∂2

x )
s

2 to (2) and taking the inner product with
Λs :

< ΛsYt ,Λ
sY > +

1

ǫ
< MΛsYx ,Λ

sY > +

+ < Λs(N(W (t))Yx),Λ
sY > + < AΛsYxx ,Λ

sY >= 0.
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sY >= 1

2 < MΛsY ,ΛsY >x .
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We derive an a priori estimate:
Applying Λs = (1 − ∂2

x )
s

2 to (2) and taking the inner product with
Λs :

< ΛsYt ,Λ
sY > +

1
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Hence

d

dt
‖Y (t)‖2

s = −
∫
< Λs(N(W (t))Yx ),ΛsY >≤ C (t)‖Y (t)‖2

s

where C (t) = C‖W (t)‖2
s .
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where E (T ) = {W ∈ X ; ‖W ‖X ≤ 2K}, is a closed convex subset
of X (T ) = C ([0;T ];Hs (R7)) and K is such that ‖Yo‖ ≤ K .
(Ψ is a contraction for T small enough).
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We prove the existence of a fix-point for the application

Ψ : E (T ) → C ([0;T ],Hs (R7))

W → Y = U(t)Yo +

∫
t

0
U(t − τ)R(W (τ))dτ,

where E (T ) = {W ∈ X ; ‖W ‖X ≤ 2K}, is a closed convex subset
of X (T ) = C ([0;T ];Hs (R7)) and K is such that ‖Yo‖ ≤ K .
(Ψ is a contraction for T small enough).

We obtain a solution such that

sup
0≤t≤T

‖Y (t)‖s ≤ 2K ( we can prove that sup
0≤t≤T

‖Yt(t)‖s−2 ≤ C )
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F (ǫ) = u(ǫ) − vρ(ǫ) + k|B (ǫ)|2 and G (ǫ) = βρ(ǫ) − vu(ǫ) − k
v
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|B (ǫ)|2.
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− β(γ
(ǫ)
x − α(ǫ)δ

(ǫ)
x ) = 0.

Hence ‖G (ǫ)
X

‖s−2 ≤ Cǫ. By the Gagliardo-Nirenberg inequality,

‖G (ǫ)‖∞ ≤ C‖Ds−1G (ǫ)‖
1

2(s−1)
o ‖G (ǫ)‖1− 1
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We obtain the same kind of estimates for F (ǫ):

F ǫ,G ǫ → 0 in C([0;T ] × R) (Strong topology).
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uǫ = (α(ǫ), β(ǫ), γ(ǫ), δ(ǫ))

uǫ is bounded in C o([0;T ];Hs (R) :

u(ǫ) → u in L∞(0,T ,Hs+1) (weak*)

.

But u
(ǫ)
t is also bounded in C o([0;T ];Hs−2(R):

By a standard argument
(Arzela Ascoli Theorem in time+Rellich compactness Theorem in
space+interpolation),

u(ǫ) → u in Co([0;T ],Hs−ǫ
loc

)(strong topogy).
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where B satisfies

i∂TB + ωBXX +
kv

4(β − v2)
|B |2B = 0.
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T HE END
Thank you for your attention.


	Introduction
	Well posedness of the IVP
	Solitary waves
	The adiabatic limit
	Proof

