◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

On a Zakharov-type Equation for Alfvén waves

Filipe Oliveira

Centro de Matemática e Aplicações - Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa

January 3 ,2007 - impa

2 Well posedness of the IVP

3 Solitary waves

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Introduction	Well posedness of the IVP	Solitary waves	The adiabatic limit	Proof
Alfvén V	Vaves			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Well posedness of the IVP	Solitary waves	The adiabatic limit	Proof
Alfvén Wa	ives			

• In the presence of an external magnetic field, transverse oscillations of the magnetic field lines known as Alfvén waves can be observed in several magnetised plasmas.

Introduction	Well posedness of the IVP	Solitary waves	The adiabatic limit	Proof
Alfvén W	aves			

• In the presence of an external magnetic field, transverse oscillations of the magnetic field lines known as Alfvén waves can be observed in several magnetised plasmas.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

• The Dynamics of Alfvén waves are ruled by the so-called MHD equations.

Introduction	Well posedness of the IVP	Solitary waves	The adiabatic limit	Proof
Alfvén	Waves			

- In the presence of an external magnetic field, transverse oscillations of the magnetic field lines known as Alfvén waves can be observed in several magnetised plasmas.
- The Dynamics of Alfvén waves are ruled by the so-called MHD equations.
- The MHD equations read:

$$\begin{cases} \partial_t \rho_M + \nabla .(\rho_M \mathbf{u}) = 0\\ \rho_M (\partial_t \mathbf{u} + \mathbf{u} . \nabla \mathbf{u}) = -\frac{\beta}{\gamma} \nabla (\rho_M^{\gamma}) + (\nabla \times \mathbf{b}) \times \mathbf{b}\\ \partial_t \mathbf{b} = \nabla \times (\mathbf{u} \times \mathbf{b}) - \frac{1}{R_i} \nabla \times (\frac{1}{\rho_M} (\nabla \times \mathbf{b}) \times \mathbf{b})\\ \nabla . \mathbf{b} = 0, \end{cases}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Introduction	Well posedness of the IVP	Solitary waves	The adiabatic limit	Proof
Alfvén	Waves			

- In the presence of an external magnetic field, transverse oscillations of the magnetic field lines known as Alfvén waves can be observed in several magnetised plasmas.
- The Dynamics of Alfvén waves are ruled by the so-called MHD equations.
- The MHD equations read:

$$\begin{cases} \partial_t \rho_M + \nabla .(\rho_M \mathbf{u}) = 0\\ \rho_M(\partial_t \mathbf{u} + \mathbf{u} . \nabla \mathbf{u}) = -\frac{\beta}{\gamma} \nabla(\rho_M^{\gamma}) + (\nabla \times \mathbf{b}) \times \mathbf{b}\\ \partial_t \mathbf{b} = \nabla \times (\mathbf{u} \times \mathbf{b}) - \frac{1}{R_i} \nabla \times (\frac{1}{\rho_M} (\nabla \times \mathbf{b}) \times \mathbf{b})\\ \nabla . \mathbf{b} = 0, \end{cases}$$

where **b** is the magnetic field, ρ the density of mass and **u** the fluid speed.

▲日▼▲□▼▲□▼▲□▼ □ ののの

We present here a uni-dimensional asymptotic model for the evolution of wave trains of Alfvén waves with wave number k and frequency $\tilde{\omega}$, in a frame travelling at the Alfvén-wave group velocity $v = 2\tilde{\omega}^3 k^{-1} (k^2 + \tilde{\omega}^2)^{-1}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

$$\begin{cases} i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B = 0 \quad (a) \\ \epsilon \partial_T \rho + \partial_X (u - v\rho) = -k\partial_X |B|^2 \quad (b) \\ \epsilon \partial_T u + \partial_X (\beta \rho - vu) = \frac{k}{2} v \partial_X |B|^2 \quad (c), \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

$$\begin{cases} i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B = 0 \quad (a) \\ \epsilon \partial_T \rho + \partial_X (u - v\rho) = -k\partial_X |B|^2 \quad (b) \\ \epsilon \partial_T u + \partial_X (\beta \rho - vu) = \frac{k}{2} v \partial_X |B|^2 \quad (c), \end{cases}$$
$$(X, T) \text{ has been scaled: } X = \epsilon(x - vt) \text{ and } T = \epsilon^2 t.$$

$$\begin{cases} i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B = 0 \quad (a) \\ \epsilon \partial_T \rho + \partial_X (u - v\rho) = -k\partial_X |B|^2 \quad (b) \\ \epsilon \partial_T u + \partial_X (\beta \rho - vu) = \frac{k}{2} v \partial_X |B|^2 \quad (c), \end{cases}$$
$$(X, T) \text{ has been scaled: } X = \epsilon(x - vt) \text{ and } T = \epsilon^2 t.$$

B is the transverse magnetic field, *u* is the ion speed in the (*Ox*) direction and ρ the density of mass.

We obtain here the Zakharov-Rubenchik equation, introduced as an universal model for the interaction of long and short waves (1972).

Introduction	Well posedness of the IVP	Solitary waves	The adiabatic limit	Proof
Well	posedness			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Well posedness of the IVP	Solitary waves	The adiabatic limit	Proof
Well pos	sedness			

$$\begin{cases} i\partial_{T}B + \omega\partial_{XX}B - k(u - \frac{v}{2}\rho + q|B|^{2})B = 0 \quad (a) \\ \epsilon\partial_{T}\rho + \partial_{X}(u - v\rho) = -k\partial_{X}|B|^{2} \quad (b) \\ \epsilon\partial_{T}u + \partial_{X}(\beta\rho - vu) = \frac{k}{2}v\partial_{X}|B|^{2} \quad (c). \end{cases}$$

◆□> ◆□> ◆三> ◆三> ・三 のへで

Theorem 1

The Zakharov-Rubenchik system is globally well-posed in $H^2(\mathbb{R}) \times H^1(\mathbb{R}) \times H^1(\mathbb{R})$.

Introduction	Well posedness of the IVP	Solitary waves	The adiabatic limit	Proof

$$\begin{cases} iB_t + B_{xx} + \psi_1 B + \psi_2 B + |B|^2 B = 0\\ \psi_{1tt} - \psi_{1xx} = |B|^2_{xx}\\ \psi_{2t} - \psi_{2x} = |B|^2_x \end{cases}$$
(1)

$$\begin{cases} iB_t + B_{xx} + \psi_1 B + \psi_2 B + |B|^2 B = 0\\ \psi_{1tt} - \psi_{1xx} = |B|^2_{xx}\\ \psi_{2t} - \psi_{2x} = |B|^2_x \end{cases}$$
(1)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

For $\psi_1 \equiv \psi_2 \equiv 0$, the system becomes the Nonlinear Schrodinger Equation.

$$\begin{cases} iB_t + B_{xx} + \psi_1 B + \psi_2 B + |B|^2 B = 0\\ \psi_{1tt} - \psi_{1xx} = |B|^2_{xx}\\ \psi_{2t} - \psi_{2x} = |B|^2_x \end{cases}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

For $\psi_1 \equiv \psi_2 \equiv 0$, the system becomes the Nonlinear Schrodinger Equation.

For $\psi_1 \equiv 0$, we get the Zakharov Equation.

$$\begin{cases} iB_t + B_{xx} + \psi_1 B + \psi_2 B + |B|^2 B = 0\\ \psi_{1tt} - \psi_{1xx} = |B|^2_{xx}\\ \psi_{2t} - \psi_{2x} = |B|^2_x \end{cases}$$
(1)

For $\psi_1 \equiv \psi_2 \equiv 0$, the system becomes the Nonlinear Schrodinger Equation.

For $\psi_1 \equiv 0$, we get the Zakharov Equation.

For $\psi_2 \equiv 0$, the system reduces to the Benney Equation.

$$\begin{cases} iB_t + B_{xx} + \psi_1 B + \psi_2 B + |B|^2 B = 0\\ \psi_{1tt} - \psi_{1xx} = |B|^2_{xx}\\ \psi_{2t} - \psi_{2x} = |B|^2_x \end{cases}$$
(1)

For $\psi_1 \equiv \psi_2 \equiv 0$, the system becomes the Nonlinear Schrodinger Equation.

For $\psi_1 \equiv 0$, we get the Zakharov Equation.

For $\psi_2 \equiv 0$, the system reduces to the Benney Equation.

The difficulty here is the derivative loss in the nonlinear terms.

The system can be re-written without derivative-loss: $[F \rightarrow B_t]$:

$$\begin{cases} iF_t + F_{xx} + (\psi_1 + \psi_2 + B)F \\ + (\psi_{1t} + \psi_{2t} + \overline{F}\tilde{B})\tilde{B} = 0 \\ \psi_{1tt} - \psi_{1xx} = |B|_{xx}^2 \\ \psi_{2t} - \psi_{2x} = |B|_x^2, \end{cases}$$

where

$$\begin{split} \tilde{B}(x,t) &= B_o(x) + \int_0^t F(x,s) ds \\ B(x,t) &= (\Delta-1)^{-1} \mathcal{A}(F,\psi_1,\psi_2,\tilde{B}). \end{split}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Using Strichartz-type estimates for the free Schrödinger group, we can now obtain the existence of local (strong) solutions via a fixed-point in the Banach space

$$\begin{aligned} \|(F,\psi_1,\psi_2)\|_{X(T)} &= \|F\|_{L^{\infty}(0,T,L^2)} + \|F\|_{L^6(0,T,L^6)} \\ &+ \|\psi_1\|_{L^{\infty}(0,T,H^1)} + \|\psi_2\|_{L^{\infty}(0,T,H^1)} \\ &+ \|\psi_{1t}\|_{L^{\infty}(0,T,L^2)} + \|\psi_{2t}\|_{L^{\infty}(0,T,L^2)}. \end{aligned}$$

To obtain global solutions, we need to compute some invariants:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The following quantities are conserved by the Zakharov-Rubenchik flow:

$$\begin{split} I_1(t) &= \int_{\mathbb{R}} |B|^2 \\ I_2(t) &= \frac{\omega}{2} \int_{\mathbb{R}} |B_x|^2 + \frac{kq}{4} \int_{\mathbb{R}} |B|^4 + \frac{k}{2} \int_{\mathbb{R}} (u - \frac{v}{2}\rho) |B|^2 \\ &+ \frac{\beta}{4} \int_{\mathbb{R}} |\rho|^2 + \frac{1}{4} \int_{\mathbb{R}} |u|^2 - \frac{v}{2} \int_{\mathbb{R}} u\rho, \\ I_3(t) &= \epsilon \int_{\mathbb{R}} u\rho + \frac{i}{2} \int_{\mathbb{R}} (B\overline{B_x} - B_x\overline{B}). \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The following quantities are conserved by the Zakharov-Rubenchik flow:

$$\begin{split} I_1(t) &= \int_{\mathbb{R}} |B|^2 \\ I_2(t) &= \frac{\omega}{2} \int_{\mathbb{R}} |B_x|^2 + \frac{kq}{4} \int_{\mathbb{R}} |B|^4 + \frac{k}{2} \int_{\mathbb{R}} (u - \frac{v}{2}\rho) |B|^2 \\ &+ \frac{\beta}{4} \int_{\mathbb{R}} |\rho|^2 + \frac{1}{4} \int_{\mathbb{R}} |u|^2 - \frac{v}{2} \int_{\mathbb{R}} u\rho, \\ I_3(t) &= \epsilon \int_{\mathbb{R}} u\rho + \frac{i}{2} \int_{\mathbb{R}} (B\overline{B_x} - B_x\overline{B}). \end{split}$$

Using these quantities, One can show the a priori estimation

$$\forall t \leq T, \, \|(F,\psi_1,\psi_2)\|_{X(T)} \leq D(T),$$

where D is a continuous function. This is enough to prove that the solutions ares global (absence of blow-up)

Existence of solitary-wave solutions

We look for solutions of the form

$$Q_c(x,t) = (e^{i\lambda t}A(x-ct), a|A(x-ct)|^2, b|A(x-ct)|^2).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Existence of solitary-wave solutions

We look for solutions of the form

$$Q_c(x,t) = (e^{i\lambda t}A(x-ct), a|A(x-ct)|^2, b|A(x-ct)|^2).$$

Inserting this in the ZR equation, we find that $Q_c(t)$ is a solution iff $R(x) = e^{\frac{-icx}{2\omega}}A(x)$ satisfies

$$R''-ER-(rac{k}{\omega}a-rac{v}{2}b+q)R^2R=0,$$

where $E = \frac{1}{w} (\lambda - \frac{c^2}{4\omega})$ and

$$a = a(c) = \frac{k(-\beta + \frac{v}{2}(c\epsilon + v))}{\beta - (c\epsilon + v)^2}, \ b = b(c) = \frac{k(-c\epsilon - \frac{v}{2})}{\beta - (c\epsilon + v)^2}.$$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 = ∽ の < (~

For E > 0, it is known that

$$R'' - ER - (\frac{k}{\omega}a - \frac{v}{2}b + q)R^2R = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

possesses a unique positive exponential decreasing solution, provided that $a - \frac{v}{2}b + q < 0$. This last condition holds provided that ϵ is small enough. Hence: For E > 0, it is known that

$$R'' - ER - (\frac{k}{\omega}a - \frac{v}{2}b + q)R^2R = 0$$

possesses a unique positive exponential decreasing solution, provided that $a - \frac{v}{2}b + q < 0$. This last condition holds provided that ϵ is small enough. Hence:

Existence of ground states

For ϵ small enough, the Zakharov-Rubenchik system possesses soliton solutions.

▲日▼▲□▼▲□▼▲□▼ □ ののの

▲日▼▲□▼▲□▼▲□▼ □ ののの

Orbital Stability of ground states

We introduce the orbit $Q = (B, u, \rho) \in H^1 imes L^2 imes L^2$:

$$\mathcal{O}(Q) = \{ e^{i\alpha} B(.+x_o), u(.+x_o), \rho(.+x_o)/\alpha, x_o \in \mathbb{R} \}.$$

We set the distance between the orbit $\mathcal{O}(Q)$ and the orbit of a ground state $\mathcal{O}(Q_R)$ at a time *t*:

$$d(t) := d(Q(t), Q_R(t)) := \inf \alpha, x_o\{ \|Q_{\alpha, x_o}(t) - Q_R(t)\|\}.$$

By building an appropriate Lyapunov invariant, we can prove the following:

Orbital Stability of ground states

We introduce the orbit $Q = (B, u, \rho) \in H^1 imes L^2 imes L^2$:

$$\mathcal{O}(Q) = \{e^{i\alpha}B(.+x_o), u(.+x_o), \rho(.+x_o)/\alpha, x_o \in \mathbb{R}\}.$$

We set the distance between the orbit $\mathcal{O}(Q)$ and the orbit of a ground state $\mathcal{O}(Q_R)$ at a time *t*:

$$d(t) := d(Q(t), Q_R(t)) := \inf \alpha, x_o\{ \|Q_{\alpha, x_o}(t) - Q_R(t)\|\}.$$

By building an appropriate Lyapunov invariant, we can prove the following:

Orbital stability

For every $\epsilon > 0$, there exists $\delta > 0$ such that

$$\|Q_o - Q_R(0)\| < \delta \Rightarrow \forall t \ge 0 \ , \ d(t) < \epsilon.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The adiabatic limit

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} &i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B = 0 \ \text{(a)} \\ &\epsilon \partial_T \rho + \partial_X (u - v\rho) = -k\partial_X |B|^2 \ \text{(b)} \\ &\epsilon \partial_T u + \partial_X (\beta \rho - vu) = \frac{k}{2} v \partial_X |B|^2 \ \text{(c)}. \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The adiabatic limit

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B &= 0 \ \text{(a)} \\ \partial_X(u - v\rho) &= -k\partial_X|B|^2 \ \text{(b)} \\ \epsilon \partial_T u + \partial_X(\beta\rho - vu) &= \frac{k}{2}v\partial_X|B|^2 \ \text{(c)}. \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

The adiabatic limit

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B &= 0 \ \text{(a)} \\ \partial_X(u - v\rho) &= -k\partial_X|B|^2 \ \text{(b)} \\ \partial_X(\beta\rho - vu) &= \frac{k}{2}v\partial_X|B|^2 \ \text{(c)}. \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The adiabatic limit

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B &= 0 \ \text{(a)} \\ (u - v\rho) &= -k \quad |B|^2 \ \text{(b)} \\ \partial_X (\beta \rho - vu) &= \frac{k}{2} v \partial_X |B|^2 \ \text{(c)}. \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The adiabatic limit

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B &= 0 \quad (\text{a}) \\ (u - v\rho) &= -k \quad |B|^2 \quad (\text{b}) \\ (\beta \rho - vu) &= \frac{k}{2}v \quad |B|^2 \quad (\text{c}). \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

$$u - v\rho = -k|B|^2$$
 and $\beta\rho - vu = \frac{k}{2}v|B|^2$.

◆□> ◆□> ◆三> ◆三> ・三 のへで

The adiabatic limit

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} i\partial_T B + \omega \partial_{XX} B - k(u - \frac{v}{2}\rho + q|B|^2)B &= 0 \quad (\text{a}) \\ (u - v\rho) &= -k \quad |B|^2 \quad (\text{b}) \\ (\beta \rho - vu) &= \frac{k}{2}v \quad |B|^2 \quad (\text{c}). \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

$$u - v\rho = -k|B|^2$$
 and $\beta\rho - vu = \frac{k}{2}v|B|^2$.

Replacing in (a), B satisfies the NLS equation

$$i\partial_T B + \omega B_{XX} + rac{kv}{4(eta - v^2)}|B|^2 B = 0.$$

The adiabatic limit

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} i\partial_T B + \omega \partial_{XX} B - k \big(u - \frac{v}{2}\rho + q|B|^2 \big) B &= 0 \quad \text{(a)} \\ \big(u - v\rho \big) &= -k \quad |B|^2 \quad \text{(b)} \\ \big(\beta \rho - vu \big) &= \frac{k}{2} v \quad |B|^2 \quad \text{(c)}. \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

$$u - v\rho = -k|B|^2$$
 and $\beta\rho - vu = \frac{k}{2}v|B|^2$.

Replacing in (a), B satisfies the NLS equation

$$i\partial_T B + \omega B_{XX} + rac{kv}{4(eta - v^2)}|B|^2 B = 0.$$

Question: $(B^{(\epsilon)}, \rho^{(\epsilon)}, u^{(\epsilon)})$ solution of the Zakharov-Rubenchik system.

B solution of the NLS equation.

The adiabatic limit

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} i\partial_T B + \omega \partial_{XX} B - k \big(u - \frac{v}{2}\rho + q|B|^2 \big) B &= 0 \quad \text{(a)} \\ \big(u - v\rho \big) &= -k \quad |B|^2 \quad \text{(b)} \\ \big(\beta \rho - vu \big) &= \frac{k}{2} v \quad |B|^2 \quad \text{(c)}. \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

$$u - v\rho = -k|B|^2$$
 and $\beta\rho - vu = \frac{k}{2}v|B|^2$.

Replacing in (a), B satisfies the NLS equation

$$i\partial_T B + \omega B_{XX} + rac{kv}{4(eta - v^2)}|B|^2 B = 0.$$

Question: $(B^{(\epsilon)}, \rho^{(\epsilon)}, u^{(\epsilon)})$ solution of the Zakharov-Rubenchik system.

B solution of the NLS equation.

In the adiabatic limit ($\epsilon \rightarrow 0$):

$$\begin{split} &i\partial_T B + \omega \partial_{XX} B - k \big(u - \frac{v}{2}\rho + q|B|^2 \big) B = 0 \quad \text{(a)} \\ &\epsilon \partial_T \rho + \partial_X \big(u - v\rho \big) = -k \partial_X |B|^2 \quad \text{(b)} \\ &\epsilon \partial_T u + \partial_X \big(\beta \rho - vu \big) = \frac{k}{2} v \partial_X |B|^2 \quad \text{(c)}. \end{split}$$

u and ρ become slaved to the magnetic field amplitude:

$$u - v\rho = -k|B|^2$$
 and $\beta\rho - vu = \frac{k}{2}v|B|^2$.

Replacing in (a), B satisfies the NLS equation

$$i\partial_T B + \omega B_{XX} + \frac{kv}{4(\beta - v^2)}|B|^2 B = 0.$$

Question: $(B^{(\epsilon)}, \rho^{(\epsilon)}, u^{(\epsilon)})$ solution of the Zakharov-Rubenchik system.

B solution of the NLS equation.

$$B^{(\epsilon)} \to B$$
? If so, in what sense?

Main Theorem

Assume
$$\tilde{\omega} < 0$$
, $\beta - v^2 > 0$ and $v < 0$.
Let $s > \frac{3}{2}$, $\epsilon < 1$ and

 $(B_o, \rho_o, u_o) \in H^{s+1}(\mathbb{R}) \times H^s(\mathbb{R}) \times H^s(\mathbb{R}).$

Main Theorem

Assume
$$\tilde{\omega} < 0$$
, $\beta - v^2 > 0$ and $v < 0$.
Let $s > \frac{3}{2}$, $\epsilon < 1$ and

$$(B_o, \rho_o, u_o) \in H^{s+1}(\mathbb{R}) \times H^s(\mathbb{R}) \times H^s(\mathbb{R}).$$

Then there exists $T_o > 0$ independent of ϵ such that the Zakharov-Rubenchik possesses a unique solution

$$(B^{(\epsilon)},\rho^{(\epsilon)},u^{(\epsilon)})\in\mathcal{C}^o([0;T_o];H^{s+1}(\mathbb{R})\times H^s(\mathbb{R})\times H^s(\mathbb{R})).$$

Main Theorem

Assume
$$\tilde{\omega} < 0$$
, $\beta - v^2 > 0$ and $v < 0$.
Let $s > \frac{3}{2}$, $\epsilon < 1$ and

$$(B_o, \rho_o, u_o) \in H^{s+1}(\mathbb{R}) \times H^s(\mathbb{R}) \times H^s(\mathbb{R}).$$

Then there exists $T_o > 0$ independent of ϵ such that the Zakharov-Rubenchik possesses a unique solution

$$(B^{(\epsilon)}, \rho^{(\epsilon)}, u^{(\epsilon)}) \in \mathcal{C}^{o}([0; T_{o}]; H^{s+1}(\mathbb{R}) \times H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})).$$

Furthermore, if $u_o - v\rho_o = -k|B_o|^2$ and $\beta\rho_o - vu_o = k\frac{v}{2}|B_o|^2$,

$$B^{(\epsilon)} \rightarrow B \text{ in } C^o([0; T]; C^2_{loc})$$

where B is the solution to the NLS equation (15) for initial data $B(0,x) = B_o(x)$.

Key: if $\tilde{\omega} < 0$, $\beta - v^2 > 0$ and v < 0, putting

$$(V, F, G) := (\epsilon \partial_x^{-1} (u + \frac{v}{2}\rho)_t, u - v\rho + k|B|^2, \beta \rho - vu + k\frac{v}{2}|B|^2)$$

and

$$(\alpha, \beta, \gamma, \delta) := \sqrt{2}(\operatorname{Re}(B), \operatorname{Im}(B), \operatorname{Re}(B_x), \operatorname{Im}(B_x)),$$
$$Y = (V, F, G, \alpha, \beta, \gamma, \delta)$$

Key: if $\tilde{\omega} < 0$, $\beta - v^2 > 0$ and v < 0, putting

$$(V, F, G) := (\epsilon \partial_x^{-1} (u + \frac{v}{2}\rho)_t, u - v\rho + k|B|^2, \beta \rho - vu + k\frac{v}{2}|B|^2)$$

and

$$(\alpha, \beta, \gamma, \delta) := \sqrt{2}(\operatorname{Re}(B), \operatorname{Im}(B), \operatorname{Re}(B_{x}), \operatorname{Im}(B_{x})),$$

 $Y = (V, F, G, \alpha, \beta, \gamma, \delta)$

satisfies the perturbed symmetric hyperbolic system:

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$

Here, M, N(Y) are symmetric matrixes, A is antisymmetric and R(Y) is a nonlinear term.

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$

ヘロト ヘ部ト ヘヨト ヘヨト

æ

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$

We use Friedrich's theory for symmetric hyperbolic systems:

$$Y_t + \frac{1}{\epsilon}MY_x = 0.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$

We use Friedrich's theory for symmetric hyperbolic systems:

$$Y_t + \frac{1}{\epsilon}MY_x = 0.$$

This theory is known to work in the quasi-linear case:

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) = 0.$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$

We use Friedrich's theory for symmetric hyperbolic systems:

$$Y_t + \frac{1}{\epsilon}MY_x = 0.$$

This theory is known to work in the quasi-linear case:

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) = 0.$$

Here, we will extend it to the case where the "perturbation"

 AY_{XX}

is present.

For a fixed function W we consider the problem

$$Y_t + \left(\frac{1}{\epsilon}M + N(W)\right)Y_x + AY_{xx} = 0.$$
 (2)

For a fixed function W we consider the problem

$$Y_t + \left(\frac{1}{\epsilon}M + N(W)\right)Y_x + AY_{xx} = 0.$$
 (2)

We prove the following Lemma:

Lemma

Let $s > \frac{3}{2}$ and $W(x, t) \in C(\mathbb{R}, H^{s}(\mathbb{R})^{7})$. There exists a one parameter semigroup $\{U(t)\}_{t\geq 0}$ acting on $H^{s}(\mathbb{R})^{7}$:

$$\begin{array}{rcccc} U(t): & H^{s}(\mathbb{R})^{7} & \to & H^{s}(\mathbb{R})^{7} \\ & & Y_{o} & \to & U(t)Y_{o} \end{array}$$

which generates the solution $Y(x,t) = U(t)Y_o \in C(\mathbb{R}_+, H^s(\mathbb{R})^7) \cap C^1(\mathbb{R}_+, H^{s-2}(\mathbb{R})^7)$ of the I.V.P. (2) for initial data Y_o . For a fixed function W we consider the problem

$$Y_t + \left(\frac{1}{\epsilon}M + N(W)\right)Y_x + AY_{xx} = 0.$$
 (2)

We prove the following Lemma:

Lemma

Let $s > \frac{3}{2}$ and $W(x, t) \in C(\mathbb{R}, H^{s}(\mathbb{R})^{7})$. There exists a one parameter semigroup $\{U(t)\}_{t\geq 0}$ acting on $H^{s}(\mathbb{R})^{7}$:

$$\begin{array}{rcccc} U(t): & H^{s}(\mathbb{R})^{7} & \to & H^{s}(\mathbb{R})^{7} \\ & & Y_{o} & \to & U(t)Y_{o} \end{array}$$

which generates the solution $Y(x,t) = U(t)Y_o \in C(\mathbb{R}_+, H^s(\mathbb{R})^7) \cap C^1(\mathbb{R}_+, H^{s-2}(\mathbb{R})^7)$ of the I.V.P. (2) for initial data Y_o . Moreover, for T > 0 and for every $f \in H^s(\mathbb{R})^7$,

$$\|U(t)f\|_{s} \leq e^{CT \sup_{0 \leq t \leq T} \|W(t)\|_{s}^{2}} \|f\|_{s}, \quad t \in [0; T].$$
(3)

We derive an a priori estimate:

We derive an a priori estimate:

Applying $\Lambda^s = (1 - \partial_x^2)^{\frac{s}{2}}$ to (2) and taking the inner product with Λ^s :

$$< \Lambda^{s} Y_{t}, \Lambda^{s} Y > + \frac{1}{\epsilon} < M \Lambda^{s} Y_{x}, \Lambda^{s} Y > +$$

+ $< \Lambda^{s} (N(W(t)) Y_{x}), \Lambda^{s} Y > + < A \Lambda^{s} Y_{xx}, \Lambda^{s} Y > = 0.$

We derive an a priori estimate:

Applying $\Lambda^s = (1 - \partial_x^2)^{\frac{s}{2}}$ to (2) and taking the inner product with Λ^s :

$$< \Lambda^{s} Y_{t}, \Lambda^{s} Y > + rac{1}{\epsilon} < M \Lambda^{s} Y_{x}, \Lambda^{s} Y > +$$

 $+ < \Lambda^{s} (N(W(t)) Y_{x}), \Lambda^{s} Y > + < A \Lambda^{s} Y_{xx}, \Lambda^{s} Y > = 0.$

•
$$< M\Lambda^s Y_x, \Lambda^s Y > = \frac{1}{2} < M\Lambda^s Y, \Lambda^s Y >_x .$$

We derive an a priori estimate:

Applying $\Lambda^s = (1 - \partial_x^2)^{\frac{s}{2}}$ to (2) and taking the inner product with Λ^s :

$$< \Lambda^{s} Y_{t}, \Lambda^{s} Y > + rac{1}{\epsilon} < M \Lambda^{s} Y_{x}, \Lambda^{s} Y > + \ + < \Lambda^{s} (N(W(t))Y_{x}), \Lambda^{s} Y > + < A \Lambda^{s} Y_{xx}, \Lambda^{s} Y > = 0.$$

•
$$< M\Lambda^s Y_x, \Lambda^s Y > = \frac{1}{2} < M\Lambda^s Y, \Lambda^s Y >_x .$$

•
$$\int \langle A\Lambda^{s}Y_{xx}, \Lambda^{s}Y \rangle = -\int \langle A\Lambda^{s}Y_{x}, \Lambda^{s}Y_{x} \rangle = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

We derive an a priori estimate:

Applying $\Lambda^s = (1 - \partial_x^2)^{\frac{s}{2}}$ to (2) and taking the inner product with Λ^s :

$$< \Lambda^{s} Y_{t}, \Lambda^{s} Y > + \frac{1}{\epsilon} < M \Lambda^{s} Y_{x}, \Lambda^{s} Y > +$$

 $+ < \Lambda^{s} (N(W(t))Y_{x}), \Lambda^{s} Y > + < A \Lambda^{s} Y_{xx}, \Lambda^{s} Y > = 0.$

•
$$< M\Lambda^{s}Y_{x}, \Lambda^{s}Y >= \frac{1}{2} < M\Lambda^{s}Y, \Lambda^{s}Y >_{x}$$
.
• $\int < A\Lambda^{s}Y_{xx}, \Lambda^{s}Y >= -\int < A\Lambda^{s}Y_{x}, \Lambda^{s}Y_{x} >= 0$.
Hence

$$\frac{d}{dt} \|Y(t)\|_s^2 = -\int <\Lambda^s(N(W(t))Y_x), \Lambda^s Y \geq C(t) \|Y(t)\|_s^2$$

where $C(t) = C \|W(t)\|_s^2$.

End of the proof of the lemma

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$

End of the proof of the lemma

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$
$$Y_t + \left(\frac{1}{\epsilon}M + N(W)\right)Y_x + R(W) + AY_{xx} = 0.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

End of the proof of the lemma

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$
$$Y_t + \left(\frac{1}{\epsilon}M + N(W)\right)Y_x + R(W) + AY_{xx} = 0.$$

We prove the existence of a fix-point for the application

$$\Psi : E(T) \rightarrow C([0; T], H^{s}(\mathbb{R}^{7}))$$
$$W \rightarrow Y = U(t)Y_{o} + \int_{0}^{t} U(t-\tau)R(W(\tau))d\tau,$$

where $E(T) = \{W \in X ; \|W\|_X \le 2K\}$, is a closed convex subset of $X(T) = C([0; T]; H^s(\mathbb{R}^7))$ and K is such that $\|Y_o\| \le K$. (Ψ is a contraction for T small enough).

End of the proof of the lemma

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$
$$Y_t + \left(\frac{1}{\epsilon}M + N(W)\right)Y_x + R(W) + AY_{xx} = 0.$$

We prove the existence of a fix-point for the application

$$\Psi : E(T) \rightarrow C([0; T], H^{s}(\mathbb{R}^{7}))$$
$$W \rightarrow Y = U(t)Y_{o} + \int_{0}^{t} U(t-\tau)R(W(\tau))d\tau,$$

where $E(T) = \{W \in X ; \|W\|_X \le 2K\}$, is a closed convex subset of $X(T) = C([0; T]; H^s(\mathbb{R}^7))$ and K is such that $\|Y_o\| \le K$. (Ψ is a contraction for T small enough).

We obtain a solution such that

```
\sup_{0\leq t\leq T}\|Y(t)\|_{s}\leq 2K
```

End of the proof of the lemma

$$Y_t + \left(\frac{1}{\epsilon}M + N(Y)\right)Y_x + R(Y) + AY_{xx} = 0.$$
$$Y_t + \left(\frac{1}{\epsilon}M + N(W)\right)Y_x + R(W) + AY_{xx} = 0.$$

We prove the existence of a fix-point for the application

$$\Psi : E(T) \rightarrow C([0; T], H^{s}(\mathbb{R}^{7}))$$
$$W \rightarrow Y = U(t)Y_{o} + \int_{0}^{t} U(t-\tau)R(W(\tau))d\tau,$$

where $E(T) = \{W \in X ; \|W\|_X \le 2K\}$, is a closed convex subset of $X(T) = C([0; T]; H^s(\mathbb{R}^7))$ and K is such that $\|Y_o\| \le K$. (Ψ is a contraction for T small enough).

We obtain a solution such that

 $\sup_{0 \le t \le T} \|Y(t)\|_s \le 2K (\text{ we can prove that } \sup_{0 \le t \le T} \|Y_t(t)\|_{s-2} \le C)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

End of the proof of the main theorem:

$$Y = (V^{(\epsilon)}, F^{(\epsilon)}, G^{(\epsilon)}, \alpha^{(\epsilon)}, \beta^{(\epsilon)}, \gamma^{(\epsilon)}, \delta^{(\epsilon)}),$$

 $F^{(\epsilon)} = u^{(\epsilon)} - v\rho^{(\epsilon)} + k|B^{(\epsilon)}|^2 \text{ and } G^{(\epsilon)} = \beta\rho^{(\epsilon)} - vu^{(\epsilon)} - k\frac{v}{2}|B^{(\epsilon)}|^2.$

End of the proof of the main theorem:

$$Y = (V^{(\epsilon)}, F^{(\epsilon)}, G^{(\epsilon)}, \alpha^{(\epsilon)}, \beta^{(\epsilon)}, \gamma^{(\epsilon)}, \delta^{(\epsilon)}),$$

$$F^{(\epsilon)} = u^{(\epsilon)} - v\rho^{(\epsilon)} + k|B^{(\epsilon)}|^2 \text{ and } G^{(\epsilon)} = \beta\rho^{(\epsilon)} - vu^{(\epsilon)} - k\frac{v}{2}|B^{(\epsilon)}|^2.$$

We have

$$G_T^{(\epsilon)} + \frac{1}{\epsilon} G_X^{(\epsilon)} - \beta(\gamma_X^{(\epsilon)} - \alpha^{(\epsilon)} \delta_X^{(\epsilon)}) = 0.$$

End of the proof of the main theorem:

$$Y = (V^{(\epsilon)}, F^{(\epsilon)}, G^{(\epsilon)}, \alpha^{(\epsilon)}, \beta^{(\epsilon)}, \gamma^{(\epsilon)}, \delta^{(\epsilon)}),$$

$$F^{(\epsilon)} = u^{(\epsilon)} - v\rho^{(\epsilon)} + k|B^{(\epsilon)}|^2 \text{ and } G^{(\epsilon)} = \beta\rho^{(\epsilon)} - vu^{(\epsilon)} - k\frac{v}{2}|B^{(\epsilon)}|^2.$$

We have

$$G_T^{(\epsilon)} + \frac{1}{\epsilon} G_X^{(\epsilon)} - \beta (\gamma_X^{(\epsilon)} - \alpha^{(\epsilon)} \delta_X^{(\epsilon)}) = 0.$$

Hence $\|G_X^{(\epsilon)}\|_{s-2} \leq C\epsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

End of the proof of the main theorem:

$$Y = (V^{(\epsilon)}, F^{(\epsilon)}, G^{(\epsilon)}, \alpha^{(\epsilon)}, \beta^{(\epsilon)}, \gamma^{(\epsilon)}, \delta^{(\epsilon)}),$$

$$F^{(\epsilon)} = u^{(\epsilon)} - v\rho^{(\epsilon)} + k|B^{(\epsilon)}|^2 \text{ and } G^{(\epsilon)} = \beta\rho^{(\epsilon)} - vu^{(\epsilon)} - k\frac{v}{2}|B^{(\epsilon)}|^2.$$

We have

$$G_{\mathcal{T}}^{(\epsilon)} + \frac{1}{\epsilon} G_{\mathcal{X}}^{(\epsilon)} - \beta(\gamma_{\mathcal{X}}^{(\epsilon)} - \alpha^{(\epsilon)} \delta_{\mathcal{X}}^{(\epsilon)}) = 0.$$

Hence $\|G_X^{(\epsilon)}\|_{s-2} \leq C\epsilon$. By the Gagliardo-Nirenberg inequality,

$$\|G^{(\epsilon)}\|_{\infty} \leq C \|D^{s-1}G^{(\epsilon)}\|_{o}^{\frac{1}{2(s-1)}} \|G^{(\epsilon)}\|_{o}^{1-\frac{1}{2(s-1)}} \leq C\epsilon^{\frac{1}{2(s-1)}}.$$

End of the proof of the main theorem:

$$Y = (V^{(\epsilon)}, F^{(\epsilon)}, G^{(\epsilon)}, \alpha^{(\epsilon)}, \beta^{(\epsilon)}, \gamma^{(\epsilon)}, \delta^{(\epsilon)}),$$

$$F^{(\epsilon)} = u^{(\epsilon)} - v\rho^{(\epsilon)} + k|B^{(\epsilon)}|^2 \text{ and } G^{(\epsilon)} = \beta\rho^{(\epsilon)} - vu^{(\epsilon)} - k\frac{v}{2}|B^{(\epsilon)}|^2.$$

We have

$$G_{\mathcal{T}}^{(\epsilon)} + \frac{1}{\epsilon} G_{\mathcal{X}}^{(\epsilon)} - \beta(\gamma_{\mathcal{X}}^{(\epsilon)} - \alpha^{(\epsilon)} \delta_{\mathcal{X}}^{(\epsilon)}) = 0.$$

Hence $\|G_X^{(\epsilon)}\|_{s-2} \leq C\epsilon$. By the Gagliardo-Nirenberg inequality,

$$\|G^{(\epsilon)}\|_{\infty} \leq C \|D^{s-1}G^{(\epsilon)}\|_{o}^{\frac{1}{2(s-1)}} \|G^{(\epsilon)}\|_{o}^{1-\frac{1}{2(s-1)}} \leq C\epsilon^{\frac{1}{2(s-1)}}.$$

We obtain the same kind of estimates for $F^{(\epsilon)}$: $F^{\epsilon}, G^{\epsilon} \to 0 \text{ in } C([0; T] \times \mathbb{R}) \text{ (Strong topology).}$

$$u_{\epsilon} = (\alpha^{(\epsilon)}, \beta^{(\epsilon)}, \gamma^{(\epsilon)}, \delta^{(\epsilon)})$$

 u_{ϵ} is bounded in $C^{o}([0; T]; H^{s}(\mathbb{R}) :$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$u_{\epsilon} = (\alpha^{(\epsilon)}, \beta^{(\epsilon)}, \gamma^{(\epsilon)}, \delta^{(\epsilon)})$$

 u_{ϵ} is bounded in $C^{o}([0; T]; H^{s}(\mathbb{R}))$:

 $u^{(\epsilon)} \rightarrow u \text{ in } L^{\infty}(0, T, H^{s+1}) \text{ (weak*)}$

$$u_{\epsilon} = (\alpha^{(\epsilon)}, \beta^{(\epsilon)}, \gamma^{(\epsilon)}, \delta^{(\epsilon)})$$

 u_{ϵ} is bounded in $C^{o}([0; T]; H^{s}(\mathbb{R}) :$ $u^{(\epsilon)} \to u \text{ in } L^{\infty}(0, T, H^{s+1}) \pmod{(\text{weak}^{*})}$

But $u_t^{(\epsilon)}$ is also bounded in $C^o([0; T]; H^{s-2}(\mathbb{R}))$:

By a standard argument (Arzela Ascoli Theorem in time+Rellich compactness Theorem in space+interpolation),

 $u^{(\epsilon)} \to u \text{ in } \mathcal{C}^{o}([0; T], H^{s-\epsilon}_{loc})(\text{strong topogy}).$

Taking the limit and putting $B^{(\epsilon)} = \alpha^{(\epsilon)} + i\beta^{(\epsilon)}$:

$$B^{(\epsilon)} \to B \text{ in } \mathcal{C}^{o}([0; T], H^{s+1-\epsilon}_{loc}),$$

where ${\boldsymbol B}$ satisfies

$$i\partial_T B + \omega B_{XX} + rac{kv}{4(eta - v^2)}|B|^2 B = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Taking the limit and putting $B^{(\epsilon)} = \alpha^{(\epsilon)} + i\beta^{(\epsilon)}$:

$$B^{(\epsilon)} \to B \text{ in } \mathcal{C}^o([0; T], H^{s+1-\epsilon}_{loc}),$$

where B satisfies

$$i\partial_T B + \omega B_{XX} + rac{kv}{4(\beta - v^2)}|B|^2 B = 0.$$

The convergence takes place in $C^{\circ}([0; T]; C_{loc}^2)$ by the Sobolev imbedding

$$H^{s}(\mathbb{R}) \hookrightarrow \mathcal{C}^{k}(\mathbb{R}) \quad s > rac{1}{2} + k$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Taking the limit and putting $B^{(\epsilon)} = \alpha^{(\epsilon)} + i\beta^{(\epsilon)}$:

$$B^{(\epsilon)} \to B \text{ in } \mathcal{C}^o([0; T], H^{s+1-\epsilon}_{loc}),$$

where B satisfies

$$i\partial_T B + \omega B_{XX} + rac{kv}{4(\beta - v^2)}|B|^2 B = 0.$$

The convergence takes place in $C^{\circ}([0; T]; C_{loc}^2)$ by the Sobolev imbedding

$$H^{s}(\mathbb{R}) \hookrightarrow \mathcal{C}^{k}(\mathbb{R}) \quad s > \frac{1}{2} + k.$$

THE END

Thank you for your attention.