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Ground-State Solution Among all the bound-states, the ones which
minimize the Energy.

They are said Fully Nontrivial if all components are non-null.
Otherwise, they are said Semitrivial.



n = 2 equations:

—Au+ Mu = p|ul?%u 4 Bulu/?%v|?  in Q
—Av + Aov = polv|* T %0 4 Bolv]T % ul?  in Q
U, U2 € H&(Q)

Theorem (FO, 2015)

o If 1 < ¢ <2, then for all b > 0 the system admits Fully Nontrivial
Ground States;

e I[fg>2and > #WH% — %wfg, where w = A2 /A1, then the system
admits Fully Nontrivial Ground States.



n = 2 equations:

—Au+ Mu = p|ul?%u 4 Bulu/?%v|?  in Q
—Av + Aov = polv|* T %0 4 Bolv]T % ul?  in Q
U, U2 € H&(Q)

Theorem (FO, 2015)

o If 1 < ¢ <2, then for all b > 0 the system admits Fully Nontrivial
Ground States;

e I[fg>2and > #WH% — %wfg, where w = A2 /A1, then the system
admits Fully Nontrivial Ground States.

Referee Report: The author is invited to have a look at the following
publication containing all results which the author proved in his
submission: Mandel, R. : Minimal energy solutions for cooperative
nonlinear Schrdinger systems, Nonlinear Differential Equations and
Applications NoDEA, http://dx.doi.org/10.1007/s00030-014-0281-2.
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Theorem

(Hugo Tavares, F.O., Advanced Nonlinear Studies, 2016)
Let A, pi, Bj,x > 0. Then, for 1 < ¢ < 2, the system admits a Fully
Nontrivial Ground State.
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Later improved to:
Theorem (H. Liu, Z. Liu, J. Chang 2015)
B > max{p;}.

Al =...= X

Then all groundstates are nontrivial.




Nontrivial groundstates for different A;’s

Theorem (Correia, Tavares, F.O., 2015)
Letk>3,0< A1 < Ao <---<\,. Then there exists
a=a(Ai/A,n,N) <1

such that, if
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then there exists a constant B = B(\;, i) > 0, such that, for 8 > B,
all ground states are nontrivial.

Idea: A1 and A2 can be arbitrarily far, but all other A\; need to be close to
max{A1, A2}
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Is this result optimal?
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Dear authors,

Your manuscript Semitrivial vs. fully nontrivial ground states in cooperative
cubic Schrédinger systems with d > 3 equations has been evaluated by two
referees. Both evaluators have been very positive and I am glad to announce
that your manuscript is accepted.(...)

Cedric Villani

Editor, Journal of Functional Analysis



