Search button

APLICAÇÃO DE MODELOS PREDITIVOS PARA O SETOR ALIMENTAR: UM ESTUDO COMPARATIVO

Aluno: Leonardo LourenÇo De Almeida


Resumo
Na sociedade atual a inovação surge como um papel cada vez mais preponderante nas empresas. O presente relatório surge no âmbito de um estágio curricular desenvolvido numa empresa líder a nível mundial no comércio grossista de azeites, com o principal objetivo de encontrar um modelo capaz de prever os preços das suas mercadorias. Para tal, foram analisadas várias metodologias, fazendo uma junção entre modelos tradicionais e mais inovadores e recentes. Sendo por isso, analisados os modelos ARIMA; ARIMAX; VAR como modelos mais tradicionais, em contradição às redes neuronais artificiais do tipo MLP; GMDH. Para o estudo de caso foram utilizados os dados dos três azeites de mais interesse para a empresa, distribuídos por dois conjuntos temporais diferentes, permitindo assim a análise do impacto da dimensão da amostra nas previsões. Estudou-se o impacto de variáveis independentes (nomeadamente meteorológicas, macroeconómicas, entre outras que afetam a produção da azeitona), têm nos preços de compra do azeite. Os resultados apontam para um melhor desempenho do modelo VAR em todos os grupos de dados em análise, obtendo assim as melhores previsões dentro do conjunto de modelos. Destaca-se ainda, a preferência de modelos mais tradicionais quando a série tem um menor comprimento temporal, e uma melhor eficácia das redes neuronais em conjuntos de dados mais elevados, destacando ainda a preferência da rede do tipo GMDH face à rede MLP. Conclui-se ainda, que dentro do vasto conjunto de variáveis em análise, é uma variável binária que influencia a produção (safra), a que possuí maior impacto nas previsões.


Trabalho final de Mestrado