Search button

Forecasting loss given default with the nearest neighbor algorithm

Aluno: Telmo Correia De Pina E Moura


Resumo
Nos últimos anos, a previsão do Loss Given Default (LGD) tem sido um dos principais desafios no âmbito da gestão do risco de crédito. Investigadores académicos e profissionais da indústria bancária têm-se dedicado ao estudo deste parâmetro de risco em particular. Apesar de todas as diferentes abordagens já desenvolvidas e publicadas até hoje, a previsão do LGD continua a ser um tema de estudo académico intenso e sobre o qual ainda não existe um ?consenso? metodológico na banca. Este trabalho apresenta uma abordagem alternativa para a previsão do LGD baseada na utilização de um simples, mas intuitivo, algoritmo de Machine Learning: o algoritmo nearest neighbor. De forma a avaliar a perfomance desta técnica não paramétrica na previsão do LGD, são utilizadas determinadas métricas de avaliação que permitem a comparação com um modelo paramétrico mais convencional e com a utilização do LGD médio histórico.


Trabalho final de Mestrado