Aluno: Daniel TomÁs Vital De AlcÂntara
Resumo
Um dos teoremas mais importantes da Teoria da Probabilidade é o Teorema do Limite Central. Este afirma que se Xn é uma sequência de variáveis aleatórias então as somas parciais normalizadas convergem para a distribuição normal. Além disso a ausência de pré condições faz-nos perguntar-nos se generalizações são possíveis.
Particularmente neste manuscrito vamos focar-nos em duas questões: Existe uma taxa de convergência (universal) para o Teorema do Limite Central? Além disso em que circunstâncias podemos aplicar o Teorema do Limite Central?
O teorema de Continuidade de Lévy afirma que a convergência em distribuição é equivalente à convergência nas funções características. Além disso quando aplicamos as expansões de Taylor a funções características ficamos com um polinómios com os momentos da variável como coeficientes. Por estas razões no nosso caso fazer os cálculos com funções características é preferível.
Pelo teorema de Berry Essen podemos, de facto, encontrar a taxa de convergência que procuramos. E pelo teorema de Lindeberg e condição de Lyapunov podemos descobrir que o Teorema do Limite Central pode aplicar-se a sequências que não são identicamente distribuídas. Finalmente, utilizando o teorema ergódico vamos explicar como processos estocásticos estão relacionados com a teoria ergódica. Com isto vamos mostrar como este teorema pode ser utilizado pata encontrar um resultado quando a sequencia não é independente.
Trabalho final de Mestrado