Search button

Fractional Diffusion models and option pricing in jump models

Aluno: Francisco Maria De Mateus E Jorge Da Fonseca


Resumo
O problema de valorização de derivados tem sido o foco da investigação em Matemática Financeira desde a sua conceção. Mais recentemente, a literatura tem-se focado por exemplo em modelos que assumem que as dinâmicas do preço do ativo subjacente são governadas por um processo de Lévy (por vezes chamado um processo com saltos). Este tipo de modelo admite a possibilidade de eventos extremos (saltos), que não são devidamente capturados por modelos clássicos do tipo Black-Scholes, alicerçados no movimento Browniano. Foi também demonstrado ao longo da última década que se as dinâmicas do preço do ativo subjacente seguem certos processos de Lévy, tais como o CGMY , o FMLS e o KoBoL, os preços das opções satisfazem uma equação diferencial parcial fracionária. Nesta dissertação, iremos mostrar que se as dinâmicas do ativo subjacente seguem o denominado Processo Estável Temperado Generalizado, que admite como caso particular os suprareferidos processos CGMY e KoBoL, então os preços das opções satisfazem igualmente uma equação diferencial parcial fracionária. Além disso, iremos implementar um método simples de diferenças finitas para resolver numericamente a equação deduzida, e valorizar opções do tipo europeu.


Trabalho final de Mestrado