

Date: 06/06/2023

Duration: 180 min

Part 1

- 1. The access password to a certain internet service is made of six characters. Two of those characters must be digits (0, 1, 2, 3, 4, 5, 6, 7, 8 or 9) and the remaining four characters must be uppercase vowels (A, E, I, O or U). For instance, AA2E2U and U1IEA8 are valid passwords. How many valid passwords can be formed in this way?
 - (A) 937500 (B) 318750 (C) 1875000 (D) 468750
- 2. The sum of all elements in a certain line in Pascal's triangle is 4096. What is the fourth element in that line?
 - (A) 286 (B) 495 (C) 220 (D) 715
- **3.** Consider a function defined in $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ through the expression $f(x) = 2 \log_5\left(\frac{x^3}{25}\right)$. Which of the following expressions can also be used to define f?
 - (A) $3\log_5(x)$ (B) $6\log_5(x) 4$ (C) $6\log_5(\frac{x}{25})$ (D) $6\log_5(x) 50$
- 4. Consider a function $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = \sin(e^{3x})$. Which of the following expressions defines the derivative of f?
 - (A) $\cos(3e^{3x})$ (B) $3e^{3x}\cos(3e^{3x})$ (C) $3\cos(e^{3x})$ (D) $3e^{3x}\cos(e^{3x})$

5. Consider a function $f : \mathbb{R}^+ \to \mathbb{R}$, defined by $f(x) = \ln(3x)$, as well as a point M, corresponding to the intersection of the graph of f with the horizontal axis. Which of the following equations defines the tangent to the graph of f at point M?

(A) $y = x - \frac{1}{3}$ (B) y = 6x - 2 (C) y = 6x - 3 (D) y = 3x - 1

- 6. How many complex solutions of the equation $z^9 = 2$ have their geometric images in the second quadrant?
 - (A) None (B) Two (C) Three (D) Four
- 7. Consider a function f with domain \mathbb{R} and image [-3, 5]. What is the image of function g, defined in \mathbb{R} through the expression g(x) = |f(x-1)| + 3?
 - (A) [6,8] (B) [5,7] (C) [3,5] (D) [3,8]

Part 2

- 1. Consider a complex number, z, such that $\operatorname{Re}(z) > 0$ and $\operatorname{Im}(z) = -\operatorname{Re}(z)$. To which quadrant in the complex plane belongs the geometrical image of z^{27} ?
- **2.** Let Ω be the space of events associated to a certain random experiment. Given an event $X \subset \Omega$, denote by P(X) the probability of X and by \overline{X} the complementary event.

Consider two events A, B such that P(B) < 1. Show that $P(\bar{B}) \neq 0$ and that

$$P(A \cap B) = P(A) - P(\bar{B}) + P(\bar{A}|\bar{B}) \times P(\bar{B}).$$

- **3.** Suppose that five 1 euro coins and six fifty cents coins are randomly placed in a 4×4 checker board.
 - (a) What is the probability of one of the four horizontal lines being left with no coins?
 - (b) What is the probability of one of the diagonals being totally filled with coins having the same face value?
- **4.** Consider function f, with domain \mathbb{R}^+ , defined by the expression

$$f(x) = 3x - 2\ln x + \frac{1}{x}.$$

Using exclusively analytical methods:

- (a) Study the behaviour of f regarding monotony and the existence and nature of local minima/maxima.
- (b) Study function f regarding the regions where its graph is up or down concave.
- (c) Study the existence of asymptotes to the graph of f.
- (d) Draw the graph of f.
- **5.** Let f be the function with domain $\mathbb{R} \setminus 0$ defined by

$$\begin{cases} \frac{7x}{e^{3x} - 1}, & \text{if } x > 0\\ \frac{\sin(7x)}{3x}, & \text{if } x < 0 \end{cases}$$

Answer the following questions using exclusively analytical methods.

(a) What is the value that must be assigned to f(0) in order to extend f to \mathbb{R} as a continuous function? Justify.

- (b) Show, using the intermediate value theorem, that there exists $x_0 \in \left] -\pi, -\frac{\pi}{14} \right[$ such that $f(x_0) = 1$.
- **6.** Consider a function f, defined on $[0, +\infty)$ by the expression $f(x) = \ln(3x + e^x)$.
 - (a) Compute $\lim_{x \to +\infty} f(x)$.
 - (b) Compute $\lim_{x \to +\infty} f'(x)$.

7. Consider an isosceles trapezium [ABCD] with $\overline{BC} = \overline{AD} = 7$ cm, $\overline{AB} < \overline{CD}$ and $\overline{AB} = 5$ cm. Let $\alpha \in]0, \frac{\pi}{2}[$ be the amplitude, measured in radians, of the angle $D\hat{CB}$.

(a) Show that the area of [ABCD] is given, in cm^2 , by $A(\alpha) = 49 \sin \alpha \cos \alpha + 35 \sin \alpha$.

- (b) Obtain an expression for $A'(\alpha)$.
- (c) Knowing that $\tan \alpha = 5$, compute the exact value of $A(\alpha)$.

Scores

Part I

Question	1	2	3	4	5	6	7
Points	1	1	1	1	1	1	1

Part	2
------	----------

Question	1	2	3a	3b	4a	4b	4c	4d	5a	5b	6a	6b	7a	7b	7c
Points	1	1	1	1	1	0.5	0.5	0.5	1	1	0.5	1	1	1	1